837 research outputs found

    Fast Secure Matrix Multiplications over Ring-Based Homomorphic Encryption

    Get PDF
    Secure matrix computation is one of the most fundamental and useful operations for statistical analysis and machine learning with protecting the confidentiality of input data. Secure computation can be achieved by homomorphic encryption, supporting meaningful operations over encrypted data. HElib is a software library that implements the Brakerski-Gentry-Vaikuntanathan (BGV) homomorphic scheme, in which secure matrix-vector multiplication is proposed for operating matrices. Recently, Duong et al. (Tatra Mt. Publ. 2016) proposed a new method for secure single matrix multiplication over a ring-LWE-based scheme. In this paper, we generalize Duong et al.\u27s method for secure multiple matrix multiplications over the BGV scheme. We also implement our method using HElib and show that our method is much faster than the matrix-vector multiplication in HElib for secure matrix multiplications

    Towards the AlexNet Moment for Homomorphic Encryption: HCNN, theFirst Homomorphic CNN on Encrypted Data with GPUs

    Get PDF
    Deep Learning as a Service (DLaaS) stands as a promising solution for cloud-based inference applications. In this setting, the cloud has a pre-learned model whereas the user has samples on which she wants to run the model. The biggest concern with DLaaS is user privacy if the input samples are sensitive data. We provide here an efficient privacy-preserving system by employing high-end technologies such as Fully Homomorphic Encryption (FHE), Convolutional Neural Networks (CNNs) and Graphics Processing Units (GPUs). FHE, with its widely-known feature of computing on encrypted data, empowers a wide range of privacy-concerned applications. This comes at high cost as it requires enormous computing power. In this paper, we show how to accelerate the performance of running CNNs on encrypted data with GPUs. We evaluated two CNNs to classify homomorphically the MNIST and CIFAR-10 datasets. Our solution achieved a sufficient security level (> 80 bit) and reasonable classification accuracy (99%) and (77.55%) for MNIST and CIFAR-10, respectively. In terms of latency, we could classify an image in 5.16 seconds and 304.43 seconds for MNIST and CIFAR-10, respectively. Our system can also classify a batch of images (> 8,000) without extra overhead

    Chameleon: A Hybrid Secure Computation Framework for Machine Learning Applications

    Get PDF
    We present Chameleon, a novel hybrid (mixed-protocol) framework for secure function evaluation (SFE) which enables two parties to jointly compute a function without disclosing their private inputs. Chameleon combines the best aspects of generic SFE protocols with the ones that are based upon additive secret sharing. In particular, the framework performs linear operations in the ring Z2l\mathbb{Z}_{2^l} using additively secret shared values and nonlinear operations using Yao's Garbled Circuits or the Goldreich-Micali-Wigderson protocol. Chameleon departs from the common assumption of additive or linear secret sharing models where three or more parties need to communicate in the online phase: the framework allows two parties with private inputs to communicate in the online phase under the assumption of a third node generating correlated randomness in an offline phase. Almost all of the heavy cryptographic operations are precomputed in an offline phase which substantially reduces the communication overhead. Chameleon is both scalable and significantly more efficient than the ABY framework (NDSS'15) it is based on. Our framework supports signed fixed-point numbers. In particular, Chameleon's vector dot product of signed fixed-point numbers improves the efficiency of mining and classification of encrypted data for algorithms based upon heavy matrix multiplications. Our evaluation of Chameleon on a 5 layer convolutional deep neural network shows 133x and 4.2x faster executions than Microsoft CryptoNets (ICML'16) and MiniONN (CCS'17), respectively

    Privately Connecting Mobility to Infectious Diseases via Applied Cryptography

    Get PDF
    Human mobility is undisputedly one of the critical factors in infectious disease dynamics. Until a few years ago, researchers had to rely on static data to model human mobility, which was then combined with a transmission model of a particular disease resulting in an epidemiological model. Recent works have consistently been showing that substituting the static mobility data with mobile phone data leads to significantly more accurate models. While prior studies have exclusively relied on a mobile network operator's subscribers' aggregated data, it may be preferable to contemplate aggregated mobility data of infected individuals only. Clearly, naively linking mobile phone data with infected individuals would massively intrude privacy. This research aims to develop a solution that reports the aggregated mobile phone location data of infected individuals while still maintaining compliance with privacy expectations. To achieve privacy, we use homomorphic encryption, zero-knowledge proof techniques, and differential privacy. Our protocol's open-source implementation can process eight million subscribers in one and a half hours. Additionally, we provide a legal analysis of our solution with regards to the EU General Data Protection Regulation.Comment: Added differentlial privacy experiments and new benchmark

    Peer-to-Peer Secure Multi-Party Numerical Computation Facing Malicious Adversaries

    Full text link
    We propose an efficient framework for enabling secure multi-party numerical computations in a Peer-to-Peer network. This problem arises in a range of applications such as collaborative filtering, distributed computation of trust and reputation, monitoring and other tasks, where the computing nodes is expected to preserve the privacy of their inputs while performing a joint computation of a certain function. Although there is a rich literature in the field of distributed systems security concerning secure multi-party computation, in practice it is hard to deploy those methods in very large scale Peer-to-Peer networks. In this work, we try to bridge the gap between theoretical algorithms in the security domain, and a practical Peer-to-Peer deployment. We consider two security models. The first is the semi-honest model where peers correctly follow the protocol, but try to reveal private information. We provide three possible schemes for secure multi-party numerical computation for this model and identify a single light-weight scheme which outperforms the others. Using extensive simulation results over real Internet topologies, we demonstrate that our scheme is scalable to very large networks, with up to millions of nodes. The second model we consider is the malicious peers model, where peers can behave arbitrarily, deliberately trying to affect the results of the computation as well as compromising the privacy of other peers. For this model we provide a fourth scheme to defend the execution of the computation against the malicious peers. The proposed scheme has a higher complexity relative to the semi-honest model. Overall, we provide the Peer-to-Peer network designer a set of tools to choose from, based on the desired level of security.Comment: Submitted to Peer-to-Peer Networking and Applications Journal (PPNA) 200

    A fast single server private information retrieval protocol with low communication cost

    Get PDF
    Existing single server Private Information Retrieval (PIR) protocols are far from practical. To be practical, a single server PIR protocol has to be both communicationally and computationally efficient. In this paper, we present a single server PIR protocol that has low communication cost and is much faster than existing protocols. A major building block of the PIR protocol in this paper is a tree-based compression scheme, which we call folding/unfolding. This compression scheme enables us to lower the communication complexity to O(loglogn). The other major building block is the BGV fully homomorphic encryption scheme. We show how we design the protocol to exploit the internal parallelism of the BGV scheme. This significantly reduces the server side computational overhead and makes our protocol much faster than the existing protocols. Our protocol can be further accelerated by utilising hardware parallelism. We have built a prototype of the protocol. We report on the performance of our protocol based on the prototype and compare it with the current most efficient protocols
    • …
    corecore