2 research outputs found

    Phase retrieval combined with digital holography

    Full text link
    We present a new method for real- and complex-valued image reconstruction from two intensity measurements made in the Fourier plane: the Fourier magnitude of the unknown image, and the intensity of the interference pattern arising from superimposition of the original signal with a reference beam. This approach can provide significant advantages in digital holography since it poses less stringent requirements on the reference beam. In particular, it does not require spatial separation between the sought signal and the reference beam. Moreover, the reference beam need not be known precisely, and in fact, may contain severe errors, without leading to a deterioration in the reconstruction quality. Numerical simulations are presented to demonstrate the speed and quality of reconstruction

    Fast Reconstruction Method for Diffraction Imaging

    No full text
    Abstract. We present a fast image reconstruction method for two- and three-dimensional diffraction imaging. Provided that very little information about the phase is available, the method demonstrates convergence rates that are several orders of magnitude faster than current reconstruction techniques. Unlike current methods, our approach is based on convex optimization. Besides fast convergence, our method allows great deal of flexibility in choosing most appropriate objective function as well as introducing additional information about the sought signal, e.g., smoothness. Benefits of good choice of the objective function are demonstrated by reconstructing an image from noisy data.
    corecore