15,440 research outputs found

    Automatic Metadata Generation using Associative Networks

    Full text link
    In spite of its tremendous value, metadata is generally sparse and incomplete, thereby hampering the effectiveness of digital information services. Many of the existing mechanisms for the automated creation of metadata rely primarily on content analysis which can be costly and inefficient. The automatic metadata generation system proposed in this article leverages resource relationships generated from existing metadata as a medium for propagation from metadata-rich to metadata-poor resources. Because of its independence from content analysis, it can be applied to a wide variety of resource media types and is shown to be computationally inexpensive. The proposed method operates through two distinct phases. Occurrence and co-occurrence algorithms first generate an associative network of repository resources leveraging existing repository metadata. Second, using the associative network as a substrate, metadata associated with metadata-rich resources is propagated to metadata-poor resources by means of a discrete-form spreading activation algorithm. This article discusses the general framework for building associative networks, an algorithm for disseminating metadata through such networks, and the results of an experiment and validation of the proposed method using a standard bibliographic dataset

    Replacing the Irreplaceable: Fast Algorithms for Team Member Recommendation

    Full text link
    In this paper, we study the problem of Team Member Replacement: given a team of people embedded in a social network working on the same task, find a good candidate who can fit in the team after one team member becomes unavailable. We conjecture that a good team member replacement should have good skill matching as well as good structure matching. We formulate this problem using the concept of graph kernel. To tackle the computational challenges, we propose a family of fast algorithms by (a) designing effective pruning strategies, and (b) exploring the smoothness between the existing and the new team structures. We conduct extensive experimental evaluations on real world datasets to demonstrate the effectiveness and efficiency. Our algorithms (a) perform significantly better than the alternative choices in terms of both precision and recall; and (b) scale sub-linearly.Comment: Initially submitted to KDD 201

    Non-convex Optimization for Machine Learning

    Full text link
    A vast majority of machine learning algorithms train their models and perform inference by solving optimization problems. In order to capture the learning and prediction problems accurately, structural constraints such as sparsity or low rank are frequently imposed or else the objective itself is designed to be a non-convex function. This is especially true of algorithms that operate in high-dimensional spaces or that train non-linear models such as tensor models and deep networks. The freedom to express the learning problem as a non-convex optimization problem gives immense modeling power to the algorithm designer, but often such problems are NP-hard to solve. A popular workaround to this has been to relax non-convex problems to convex ones and use traditional methods to solve the (convex) relaxed optimization problems. However this approach may be lossy and nevertheless presents significant challenges for large scale optimization. On the other hand, direct approaches to non-convex optimization have met with resounding success in several domains and remain the methods of choice for the practitioner, as they frequently outperform relaxation-based techniques - popular heuristics include projected gradient descent and alternating minimization. However, these are often poorly understood in terms of their convergence and other properties. This monograph presents a selection of recent advances that bridge a long-standing gap in our understanding of these heuristics. The monograph will lead the reader through several widely used non-convex optimization techniques, as well as applications thereof. The goal of this monograph is to both, introduce the rich literature in this area, as well as equip the reader with the tools and techniques needed to analyze these simple procedures for non-convex problems.Comment: The official publication is available from now publishers via http://dx.doi.org/10.1561/220000005
    corecore