4 research outputs found

    ๋ฉ”์‰ฌ ๊ธฐ๋ฐ˜์˜ ํด๋ฝ ๋„คํŠธ์›Œํฌ ์„ค๊ณ„ ๋ฐฉ๋ฒ•๋ก 

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2015. 2. ๊น€ํƒœํ™˜.The clock distribution network in a synchronous digital circuit delivers a clock signal to every storage element i.e., clock sink in the circuit. However, since the continued technology scaling increases PVT (process-voltage-temperature) variation, the increase of clock skew variation is highly likely to cause performance degradation or system failure at run time. Recently, to mitigate the clock skew variation, many researchers have taken a profound interest in the clock mesh network. However, though the structure of clock mesh network is excellent in tolerating timing variation, it demands significantly high power consumption due to the use of excessive mesh wire and buffer resources. Thus, optimizing the resources required in the mesh clock synthesis while maintaining the variation tolerance is crucially important. The three major tasks that greatly affect the cost of resulting clock mesh are (1) mesh segment allocation, (2) mesh buffer allocation and sizing, and (3) clock sink binding to mesh segments. Previous clock mesh optimization approaches solve the three tasks sequentially, one by one at a time, to manage the run time complexity of the tasks at the expense of losing the quality of results. However, since the three tasks are tightly inter-related, simultaneously optimizing all three tasks is essential, if the run time is ever permitted, to synthesize an economical clock mesh network. In this dissertation, we propose an approach which is able to tackle the problem in an integrated fashion by combining the three tasks into an iterative framework of incremental updates and solving them simultaneously to find a globally optimal allocation of mesh resources while taking into account the clock skew tolerance constraints. The core parts of this dissertation are a precise analysis on the relation among the resource optimization tasks and an establishment of mechanism for effective and efficient integration of the tasks. In particular, to handle the run time problem, we propose a set of speed-up techniques i.e., modeling RC circuit for eliminating redundant matrix multiplications, exploiting sliding window scheme, and fast buffer sizing effect estimation, which are fitted into our context of fast clock skew estimation in mesh resource optimization as well as an invention of early decision policies. In summary, this dissertation presents the efficient design methodology for clock mesh synthesis with consideration on integration of three tasks and reduction of runtime complexity.Abstract i Contents iii List of Figures vi List of Tables x 1 Introduction 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Contributions of This Dissertation . . . . . . . . . . . . . . . . . . . 3 2 Background 5 2.1 Clock Distribution Network . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Clock Network Topologies . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Design Metrics of Clock Network . . . . . . . . . . . . . . . . . . . 7 2.4 The Effects of Variations on Clock Skew . . . . . . . . . . . . . . . . 9 3 Clock Mesh Synthesis Flow 12 3.1 Elements of Clock Mesh . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2 Conventional Clock Mesh Synthesis Overview . . . . . . . . . . . . . 13 3.3 Initial Grid Generation . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.4 Mesh Buffer Placement and Sizing . . . . . . . . . . . . . . . . . . . 14 3.5 Clock Mesh Optimization . . . . . . . . . . . . . . . . . . . . . . . . 17 4 Integrated Resource Allocation and Binding in Clock Mesh Synthesis 19 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.2 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.3 Framework of Clock Mesh Optimization . . . . . . . . . . . . . . . . 26 4.3.1 Incremental Resource Updates . . . . . . . . . . . . . . . . . 29 4.3.2 Constraints for Variation Tolerance . . . . . . . . . . . . . . 34 4.3.3 Early Decision Policies . . . . . . . . . . . . . . . . . . . . . 38 4.3.4 Time Complexity Analysis . . . . . . . . . . . . . . . . . . . 39 4.4 Fast Clock Skew Estimation Techniques . . . . . . . . . . . . . . . . 40 4.4.1 Partially Reusing Matrix Multiplication for Incremental Updates 41 4.4.2 Adopting Sliding Window Scheme . . . . . . . . . . . . . . . 43 4.4.3 Adjusting Delay Caused by Buffer Resizing . . . . . . . . . . 44 4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.5.1 Experimental Environments . . . . . . . . . . . . . . . . . . 46 4.5.2 Resource Requirement and Variation Tolerance Comparison . 48 4.5.3 Comparison with Clock Mesh Optimization using Worst Case Timing Analysis of Commercial Tool . . . . . . . . . . . . . 56 4.5.4 Analysis of the Effect of Proposed Techniques . . . . . . . . 58 4.5.5 Run Time Analysis . . . . . . . . . . . . . . . . . . . . . . . 61 4.5.6 Accuracy and Run Time of Fast Clock Skew Estimation . . . 63 4.5.7 Electromigration Analysis . . . . . . . . . . . . . . . . . . . 68 4.5.8 Run-time Analysis in Multi-thread Computing Environment . 70 4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5 Conclusion 74 Abstract in Korean 84Docto

    Parametric Yield of VLSI Systems under Variability: Analysis and Design Solutions

    Get PDF
    Variability has become one of the vital challenges that the designers of integrated circuits encounter. variability becomes increasingly important. Imperfect manufacturing process manifest itself as variations in the design parameters. These variations and those in the operating environment of VLSI circuits result in unexpected changes in the timing, power, and reliability of the circuits. With scaling transistor dimensions, process and environmental variations become significantly important in the modern VLSI design. A smaller feature size means that the physical characteristics of a device are more prone to these unaccounted-for changes. To achieve a robust design, the random and systematic fluctuations in the manufacturing process and the variations in the environmental parameters should be analyzed and the impact on the parametric yield should be addressed. This thesis studies the challenges and comprises solutions for designing robust VLSI systems in the presence of variations. Initially, to get some insight into the system design under variability, the parametric yield is examined for a small circuit. Understanding the impact of variations on the yield at the circuit level is vital to accurately estimate and optimize the yield at the system granularity. Motivated by the observations and results, found at the circuit level, statistical analyses are performed, and solutions are proposed, at the system level of abstraction, to reduce the impact of the variations and increase the parametric yield. At the circuit level, the impact of the supply and threshold voltage variations on the parametric yield is discussed. Here, a design centering methodology is proposed to maximize the parametric yield and optimize the power-performance trade-off under variations. In addition, the scaling trend in the yield loss is studied. Also, some considerations for design centering in the current and future CMOS technologies are explored. The investigation, at the circuit level, suggests that the operating temperature significantly affects the parametric yield. In addition, the yield is very sensitive to the magnitude of the variations in supply and threshold voltage. Therefore, the spatial variations in process and environmental variations make it necessary to analyze the yield at a higher granularity. Here, temperature and voltage variations are mapped across the chip to accurately estimate the yield loss at the system level. At the system level, initially the impact of process-induced temperature variations on the power grid design is analyzed. Also, an efficient verification method is provided that ensures the robustness of the power grid in the presence of variations. Then, a statistical analysis of the timing yield is conducted, by taking into account both the process and environmental variations. By considering the statistical profile of the temperature and supply voltage, the process variations are mapped to the delay variations across a die. This ensures an accurate estimation of the timing yield. In addition, a method is proposed to accurately estimate the power yield considering process-induced temperature and supply voltage variations. This helps check the robustness of the circuits early in the design process. Lastly, design solutions are presented to reduce the power consumption and increase the timing yield under the variations. In the first solution, a guideline for floorplaning optimization in the presence of temperature variations is offered. Non-uniformity in the thermal profiles of integrated circuits is an issue that impacts the parametric yield and threatens chip reliability. Therefore, the correlation between the total power consumption and the temperature variations across a chip is examined. As a result, floorplanning guidelines are proposed that uses the correlation to efficiently optimize the chip's total power and takes into account the thermal uniformity. The second design solution provides an optimization methodology for assigning the power supply pads across the chip for maximizing the timing yield. A mixed-integer nonlinear programming (MINLP) optimization problem, subject to voltage drop and current constraint, is efficiently solved to find the optimum number and location of the pads

    Fast Placement Optimization of Power Supply Pads

    No full text
    corecore