13 research outputs found

    Fast Parametric Learning with Activation Memorization

    Full text link
    Neural networks trained with backpropagation often struggle to identify classes that have been observed a small number of times. In applications where most class labels are rare, such as language modelling, this can become a performance bottleneck. One potential remedy is to augment the network with a fast-learning non-parametric model which stores recent activations and class labels into an external memory. We explore a simplified architecture where we treat a subset of the model parameters as fast memory stores. This can help retain information over longer time intervals than a traditional memory, and does not require additional space or compute. In the case of image classification, we display faster binding of novel classes on an Omniglot image curriculum task. We also show improved performance for word-based language models on news reports (GigaWord), books (Project Gutenberg) and Wikipedia articles (WikiText-103) --- the latter achieving a state-of-the-art perplexity of 29.2

    Universal Language Model Fine-Tuning with Subword Tokenization for Polish

    Full text link
    Universal Language Model for Fine-tuning [arXiv:1801.06146] (ULMFiT) is one of the first NLP methods for efficient inductive transfer learning. Unsupervised pretraining results in improvements on many NLP tasks for English. In this paper, we describe a new method that uses subword tokenization to adapt ULMFiT to languages with high inflection. Our approach results in a new state-of-the-art for the Polish language, taking first place in Task 3 of PolEval'18. After further training, our final model outperformed the second best model by 35%. We have open-sourced our pretrained models and code.Comment: PolEval 2018 Worksho

    Improved Language Modeling by Decoding the Past

    Full text link
    Highly regularized LSTMs achieve impressive results on several benchmark datasets in language modeling. We propose a new regularization method based on decoding the last token in the context using the predicted distribution of the next token. This biases the model towards retaining more contextual information, in turn improving its ability to predict the next token. With negligible overhead in the number of parameters and training time, our Past Decode Regularization (PDR) method achieves a word level perplexity of 55.6 on the Penn Treebank and 63.5 on the WikiText-2 datasets using a single softmax. We also show gains by using PDR in combination with a mixture-of-softmaxes, achieving a word level perplexity of 53.8 and 60.5 on these datasets. In addition, our method achieves 1.169 bits-per-character on the Penn Treebank Character dataset for character level language modeling. These results constitute a new state-of-the-art in their respective settings

    Metalearning with Hebbian Fast Weights

    Full text link
    We unify recent neural approaches to one-shot learning with older ideas of associative memory in a model for metalearning. Our model learns jointly to represent data and to bind class labels to representations in a single shot. It builds representations via slow weights, learned across tasks through SGD, while fast weights constructed by a Hebbian learning rule implement one-shot binding for each new task. On the Omniglot, Mini-ImageNet, and Penn Treebank one-shot learning benchmarks, our model achieves state-of-the-art results.Comment: 8 pages, 3 figures, 4 tables. arXiv admin note: text overlap with arXiv:1712.0992

    Adaptive Input Representations for Neural Language Modeling

    Full text link
    We introduce adaptive input representations for neural language modeling which extend the adaptive softmax of Grave et al. (2017) to input representations of variable capacity. There are several choices on how to factorize the input and output layers, and whether to model words, characters or sub-word units. We perform a systematic comparison of popular choices for a self-attentional architecture. Our experiments show that models equipped with adaptive embeddings are more than twice as fast to train than the popular character input CNN while having a lower number of parameters. On the WikiText-103 benchmark we achieve 18.7 perplexity, an improvement of 10.5 perplexity compared to the previously best published result and on the Billion Word benchmark, we achieve 23.02 perplexity.Comment: 12 page

    Understanding Recurrent Neural Architectures by Analyzing and Synthesizing Long Distance Dependencies in Benchmark Sequential Datasets

    Full text link
    In order to build efficient deep recurrent neural architectures, it isessential to analyze the complexity of long distance dependencies(LDDs) of the dataset being modeled. In this context, in this pa-per, we present detailed analysis of the complexity and the degreeof LDDs (orLDD characteristics) exhibited by various sequentialbenchmark datasets. We observe that the datasets sampled from asimilar process or task (e.g. natural language, or sequential MNIST,etc) display similar LDD characteristics. Upon analysing the LDDcharacteristics, we were able to analyze the factors influencingthem; such as (i) number of unique symbols in a dataset, (ii) sizeof the dataset, (iii) number of interacting symbols within a givenLDD, and (iv) the distance between the interacting symbols. Wedemonstrate that analysing LDD characteristics can inform theselection of optimal hyper-parameters for SOTA deep recurrentneural architectures. This analysis can directly contribute to thedevelopment of more accurate and efficient sequential models. Wealso introduce the use of Strictlyk-Piecewise languages as a pro-cess to generate synthesized datasets for language modelling. Theadvantage of these synthesized datasets is that they enable targetedtesting of deep recurrent neural architectures in terms of their abil-ity to model LDDs with different characteristics. Moreover, usinga variety of Strictlyk-Piecewise languages we generate a numberof new benchmarking datasets, and analyse the performance of anumber of SOTA recurrent architectures on these new benchmarks

    Enabling Continual Learning with Differentiable Hebbian Plasticity

    Full text link
    Continual learning is the problem of sequentially learning new tasks or knowledge while protecting previously acquired knowledge. However, catastrophic forgetting poses a grand challenge for neural networks performing such learning process. Thus, neural networks that are deployed in the real world often struggle in scenarios where the data distribution is non-stationary (concept drift), imbalanced, or not always fully available, i.e., rare edge cases. We propose a Differentiable Hebbian Consolidation model which is composed of a Differentiable Hebbian Plasticity (DHP) Softmax layer that adds a rapid learning plastic component (compressed episodic memory) to the fixed (slow changing) parameters of the softmax output layer; enabling learned representations to be retained for a longer timescale. We demonstrate the flexibility of our method by integrating well-known task-specific synaptic consolidation methods to penalize changes in the slow weights that are important for each target task. We evaluate our approach on the Permuted MNIST, Split MNIST and Vision Datasets Mixture benchmarks, and introduce an imbalanced variant of Permuted MNIST -- a dataset that combines the challenges of class imbalance and concept drift. Our proposed model requires no additional hyperparameters and outperforms comparable baselines by reducing forgetting.Comment: Published as a conference paper at IJCNN 202

    Time-aware Large Kernel Convolutions

    Full text link
    To date, most state-of-the-art sequence modeling architectures use attention to build generative models for language based tasks. Some of these models use all the available sequence tokens to generate an attention distribution which results in time complexity of O(n2)O(n^2). Alternatively, they utilize depthwise convolutions with softmax normalized kernels of size kk acting as a limited-window self-attention, resulting in time complexity of O(kâ‹…n)O(k{\cdot}n). In this paper, we introduce Time-aware Large Kernel (TaLK) Convolutions, a novel adaptive convolution operation that learns to predict the size of a summation kernel instead of using a fixed-sized kernel matrix. This method yields a time complexity of O(n)O(n), effectively making the sequence encoding process linear to the number of tokens. We evaluate the proposed method on large-scale standard machine translation, abstractive summarization and language modeling datasets and show that TaLK Convolutions constitute an efficient improvement over other attention/convolution based approaches.Comment: Accepted by ICML 202

    Relational recurrent neural networks

    Full text link
    Memory-based neural networks model temporal data by leveraging an ability to remember information for long periods. It is unclear, however, whether they also have an ability to perform complex relational reasoning with the information they remember. Here, we first confirm our intuitions that standard memory architectures may struggle at tasks that heavily involve an understanding of the ways in which entities are connected -- i.e., tasks involving relational reasoning. We then improve upon these deficits by using a new memory module -- a \textit{Relational Memory Core} (RMC) -- which employs multi-head dot product attention to allow memories to interact. Finally, we test the RMC on a suite of tasks that may profit from more capable relational reasoning across sequential information, and show large gains in RL domains (e.g. Mini PacMan), program evaluation, and language modeling, achieving state-of-the-art results on the WikiText-103, Project Gutenberg, and GigaWord datasets

    Sparse Meta Networks for Sequential Adaptation and its Application to Adaptive Language Modelling

    Full text link
    Training a deep neural network requires a large amount of single-task data and involves a long time-consuming optimization phase. This is not scalable to complex, realistic environments with new unexpected changes. Humans can perform fast incremental learning on the fly and memory systems in the brain play a critical role. We introduce Sparse Meta Networks -- a meta-learning approach to learn online sequential adaptation algorithms for deep neural networks, by using deep neural networks. We augment a deep neural network with a layer-specific fast-weight memory. The fast-weights are generated sparsely at each time step and accumulated incrementally through time providing a useful inductive bias for online continual adaptation. We demonstrate strong performance on a variety of sequential adaptation scenarios, from a simple online reinforcement learning to a large scale adaptive language modelling.Comment: 9 pages, 4 figures, 2 table
    corecore