21 research outputs found

    Fast Newton-type Methods for the Least Squares Nonnegative Matrix Approximation Problem

    Full text link

    A multilevel approach for nonnegative matrix factorization

    Get PDF
    Nonnegative Matrix Factorization (NMF) is the problem of approximating a nonnegative matrix with the product of two low-rank nonnegative matrices and has been shown to be particularly useful in many applications, e.g., in text mining, image processing, computational biology, etc. In this paper, we explain how algorithms for NMF can be embedded into the framework of multi- level methods in order to accelerate their convergence. This technique can be applied in situations where data admit a good approximate representation in a lower dimensional space through linear transformations preserving nonnegativity. A simple multilevel strategy is described and is experi- mentally shown to speed up significantly three popular NMF algorithms (alternating nonnegative least squares, multiplicative updates and hierarchical alternating least squares) on several standard image datasets.nonnegative matrix factorization, algorithms, multigrid and multilevel methods, image processing

    Clustering and Latent Semantic Indexing Aspects of the Nonnegative Matrix Factorization

    Full text link
    This paper provides a theoretical support for clustering aspect of the nonnegative matrix factorization (NMF). By utilizing the Karush-Kuhn-Tucker optimality conditions, we show that NMF objective is equivalent to graph clustering objective, so clustering aspect of the NMF has a solid justification. Different from previous approaches which usually discard the nonnegativity constraints, our approach guarantees the stationary point being used in deriving the equivalence is located on the feasible region in the nonnegative orthant. Additionally, since clustering capability of a matrix decomposition technique can sometimes imply its latent semantic indexing (LSI) aspect, we will also evaluate LSI aspect of the NMF by showing its capability in solving the synonymy and polysemy problems in synthetic datasets. And more extensive evaluation will be conducted by comparing LSI performances of the NMF and the singular value decomposition (SVD), the standard LSI method, using some standard datasets.Comment: 28 pages, 5 figure

    Using Underapproximations for Sparse Nonnegative Matrix Factorization

    Full text link
    Nonnegative Matrix Factorization consists in (approximately) factorizing a nonnegative data matrix by the product of two low-rank nonnegative matrices. It has been successfully applied as a data analysis technique in numerous domains, e.g., text mining, image processing, microarray data analysis, collaborative filtering, etc. We introduce a novel approach to solve NMF problems, based on the use of an underapproximation technique, and show its effectiveness to obtain sparse solutions. This approach, based on Lagrangian relaxation, allows the resolution of NMF problems in a recursive fashion. We also prove that the underapproximation problem is NP-hard for any fixed factorization rank, using a reduction of the maximum edge biclique problem in bipartite graphs. We test two variants of our underapproximation approach on several standard image datasets and show that they provide sparse part-based representations with low reconstruction error. Our results are comparable and sometimes superior to those obtained by two standard Sparse Nonnegative Matrix Factorization techniques.Comment: Version 2 removed the section about convex reformulations, which was not central to the development of our main results; added material to the introduction; added a review of previous related work (section 2.3); completely rewritten the last part (section 4) to provide extensive numerical results supporting our claims. Accepted in J. of Pattern Recognitio

    libNMF -- A Library for Nonnegative Matrix Factorization

    Get PDF
    We present libNMF -- a computationally efficient high performance library for computing nonnegative matrix factorizations (NMF) written in C. Various algorithms and algorithmic variants for computing NMF are supported. libNMF is based on external routines from BLAS (Basic Linear Algebra Subprograms), LAPack (Linear Algebra package) and ARPack, which provide efficient building blocks for performing central vector and matrix operations. Since modern BLAS implementations support multi-threading, libNMF can exploit the potential of multi-core architectures. In this paper, the basic NMF algorithms contained in libNMF and existing implementations found in the literature are briefly reviewed. Then, libNMF is evaluated in terms of computational efficiency and numerical accuracy and compared with the best existing codes available. libNMF is publicly available at http://rlcta.univie.ac.at/software

    Using underapproximations for sparse nonnegative matrix factorization

    Get PDF
    Nonnegative Matrix Factorization (NMF) has gathered a lot of attention in the last decade and has been successfully applied in numerous applications. It consists in the factorization of a nonnegative matrix by the product of two low-rank nonnegative matrices:. MªVW. In this paper, we attempt to solve NMF problems in a recursive way. In order to do that, we introduce a new variant called Nonnegative Matrix Underapproximation (NMU) by adding the upper bound constraint VW£M. Besides enabling a recursive procedure for NMF, these inequalities make NMU particularly well suited to achieve a sparse representation, improving the part-based decomposition. Although NMU is NP-hard (which we prove using its equivalence with the maximum edge biclique problem in bipartite graphs), we present two approaches to solve it: a method based on convex reformulations and a method based on Lagrangian relaxation. Finally, we provide some encouraging numerical results for image processing applications.nonnegative matrix factorization, underapproximation, maximum edge biclique problem, sparsity, image processing
    corecore