1,159 research outputs found

    Tree-Independent Dual-Tree Algorithms

    Full text link
    Dual-tree algorithms are a widely used class of branch-and-bound algorithms. Unfortunately, developing dual-tree algorithms for use with different trees and problems is often complex and burdensome. We introduce a four-part logical split: the tree, the traversal, the point-to-point base case, and the pruning rule. We provide a meta-algorithm which allows development of dual-tree algorithms in a tree-independent manner and easy extension to entirely new types of trees. Representations are provided for five common algorithms; for k-nearest neighbor search, this leads to a novel, tighter pruning bound. The meta-algorithm also allows straightforward extensions to massively parallel settings.Comment: accepted in ICML 201

    Fast Algorithms and Efficient Statistics: N-point Correlation Functions

    Get PDF
    We present here a new algorithm for the fast computation of N-point correlation functions in large astronomical data sets. The algorithm is based on kdtrees which are decorated with cached sufficient statistics thus allowing for orders of magnitude speed-ups over the naive non-tree-based implementation of correlation functions. We further discuss the use of controlled approximations within the computation which allows for further acceleration. In summary, our algorithm now makes it possible to compute exact, all-pairs, measurements of the 2, 3 and 4-point correlation functions for cosmological data sets like the Sloan Digital Sky Survey (SDSS; York et al. 2000) and the next generation of Cosmic Microwave Background experiments (see Szapudi et al. 2000).Comment: To appear in Proceedings of MPA/MPE/ESO Conference "Mining the Sky", July 31 - August 4, 2000, Garching, German

    Cached Sufficient Statistics for Efficient Machine Learning with Large Datasets

    Full text link
    This paper introduces new algorithms and data structures for quick counting for machine learning datasets. We focus on the counting task of constructing contingency tables, but our approach is also applicable to counting the number of records in a dataset that match conjunctive queries. Subject to certain assumptions, the costs of these operations can be shown to be independent of the number of records in the dataset and loglinear in the number of non-zero entries in the contingency table. We provide a very sparse data structure, the ADtree, to minimize memory use. We provide analytical worst-case bounds for this structure for several models of data distribution. We empirically demonstrate that tractably-sized data structures can be produced for large real-world datasets by (a) using a sparse tree structure that never allocates memory for counts of zero, (b) never allocating memory for counts that can be deduced from other counts, and (c) not bothering to expand the tree fully near its leaves. We show how the ADtree can be used to accelerate Bayes net structure finding algorithms, rule learning algorithms, and feature selection algorithms, and we provide a number of empirical results comparing ADtree methods against traditional direct counting approaches. We also discuss the possible uses of ADtrees in other machine learning methods, and discuss the merits of ADtrees in comparison with alternative representations such as kd-trees, R-trees and Frequent Sets.Comment: See http://www.jair.org/ for any accompanying file
    • …
    corecore