2 research outputs found

    Fast Motion Planning for High-DOF Robot Systems Using Hierarchical System Identification

    Full text link
    We present an efficient algorithm for motion planning and control of a robot system with a high number of degrees-of-freedom. These include high-DOF soft robots or an articulated robot interacting with a deformable environment. Our approach takes into account dynamics constraints and present a novel technique to accelerate the forward dynamic computation using a data-driven method. We precompute the forward dynamic function of the robot system on a hierarchical adaptive grid. Furthermore, we exploit the properties of underactuated robot systems and perform these computations for a few DOFs. We provide error bounds for our approximate forward dynamics computation and use our approach for optimization-based motion planning and reinforcement-learning-based feedback control. Our formulation is used for motion planning of two high DOF robot systems: a high-DOF line-actuated elastic robot arm and an underwater swimming robot operating in water. As compared to prior techniques based on exact dynamic function computation, we observe one to two orders of magnitude improvement in performance.Comment: 7 page

    Realtime Simulation of Thin-Shell Deformable Materials using CNN-Based Mesh Embedding

    Full text link
    We address the problem of accelerating thin-shell deformable object simulations by dimension reduction. We present a new algorithm to embed a high-dimensional configuration space of deformable objects in a low-dimensional feature space, where the configurations of objects and feature points have approximate one-to-one mapping. Our key technique is a graph-based convolutional neural network (CNN) defined on meshes with arbitrary topologies and a new mesh embedding approach based on physics-inspired loss term. We have applied our approach to accelerate high-resolution thin shell simulations corresponding to cloth-like materials, where the configuration space has tens of thousands of degrees of freedom. We show that our physics-inspired embedding approach leads to higher accuracy compared with prior mesh embedding methods. Finally, we show that the temporal evolution of the mesh in the feature space can also be learned using a recurrent neural network (RNN) leading to fully learnable physics simulators. After training our learned simulator runs 500βˆ’10000Γ—500-10000\times faster and the accuracy is high enough for robot manipulation tasks
    corecore