32,042 research outputs found

    On the Inversion of High Energy Proton

    Full text link
    Inversion of the K-fold stochastic autoconvolution integral equation is an elementary nonlinear problem, yet there are no de facto methods to solve it with finite statistics. To fix this problem, we introduce a novel inverse algorithm based on a combination of minimization of relative entropy, the Fast Fourier Transform and a recursive version of Efron's bootstrap. This gives us power to obtain new perspectives on non-perturbative high energy QCD, such as probing the ab initio principles underlying the approximately negative binomial distributions of observed charged particle final state multiplicities, related to multiparton interactions, the fluctuating structure and profile of proton and diffraction. As a proof-of-concept, we apply the algorithm to ALICE proton-proton charged particle multiplicity measurements done at different center-of-mass energies and fiducial pseudorapidity intervals at the LHC, available on HEPData. A strong double peak structure emerges from the inversion, barely visible without it.Comment: 29 pages, 10 figures, v2: extended analysis (re-projection ratios, 2D

    Parameter Estimation of Social Forces in Crowd Dynamics Models via a Probabilistic Method

    Get PDF
    Focusing on a specific crowd dynamics situation, including real life experiments and measurements, our paper targets a twofold aim: (1) we present a Bayesian probabilistic method to estimate the value and the uncertainty (in the form of a probability density function) of parameters in crowd dynamic models from the experimental data; and (2) we introduce a fitness measure for the models to classify a couple of model structures (forces) according to their fitness to the experimental data, preparing the stage for a more general model-selection and validation strategy inspired by probabilistic data analysis. Finally, we review the essential aspects of our experimental setup and measurement technique.Comment: 20 pages, 9 figure

    Physics and application of photon number resolving detectors based on superconducting parallel nanowires

    Full text link
    The Parallel Nanowire Detector (PND) is a photon number resolving (PNR) detector which uses spatial multiplexing on a subwavelength scale to provide a single electrical output proportional to the photon number. The basic structure of the PND is the parallel connection of several NbN superconducting nanowires (100 nm-wide, few nm-thick), folded in a meander pattern. PNDs were fabricated on 3-4 nm thick NbN films grown on MgO (TS=400C) substrates by reactive magnetron sputtering in an Ar/N2 gas mixture. The device performance was characterized in terms of speed and sensitivity. PNDs showed a counting rate of 80 MHz and a pulse duration as low as 660ps full width at half maximum (FWHM). Building the histograms of the photoresponse peak, no multiplication noise buildup is observable. Electrical and optical equivalent models of the device were developed in order to study its working principle, define design guidelines, and develop an algorithm to estimate the photon number statistics of an unknown light. In particular, the modeling provides novel insight of the physical limit to the detection efficiency and to the reset time of these detectors. The PND significantly outperforms existing PNR detectors in terms of simplicity, sensitivity, speed, and multiplication noise

    On nonparametric estimation of a mixing density via the predictive recursion algorithm

    Full text link
    Nonparametric estimation of a mixing density based on observations from the corresponding mixture is a challenging statistical problem. This paper surveys the literature on a fast, recursive estimator based on the predictive recursion algorithm. After introducing the algorithm and giving a few examples, I summarize the available asymptotic convergence theory, describe an important semiparametric extension, and highlight two interesting applications. I conclude with a discussion of several recent developments in this area and some open problems.Comment: 22 pages, 5 figures. Comments welcome at https://www.researchers.one/article/2018-12-

    Laplace Approximated EM Microarray Analysis: An Empirical Bayes Approach for Comparative Microarray Experiments

    Full text link
    A two-groups mixed-effects model for the comparison of (normalized) microarray data from two treatment groups is considered. Most competing parametric methods that have appeared in the literature are obtained as special cases or by minor modification of the proposed model. Approximate maximum likelihood fitting is accomplished via a fast and scalable algorithm, which we call LEMMA (Laplace approximated EM Microarray Analysis). The posterior odds of treatment Ă—\times gene interactions, derived from the model, involve shrinkage estimates of both the interactions and of the gene specific error variances. Genes are classified as being associated with treatment based on the posterior odds and the local false discovery rate (f.d.r.) with a fixed cutoff. Our model-based approach also allows one to declare the non-null status of a gene by controlling the false discovery rate (FDR). It is shown in a detailed simulation study that the approach outperforms well-known competitors. We also apply the proposed methodology to two previously analyzed microarray examples. Extensions of the proposed method to paired treatments and multiple treatments are also discussed.Comment: Published in at http://dx.doi.org/10.1214/10-STS339 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Dead Time Compensation for High-Flux Ranging

    Full text link
    Dead time effects have been considered a major limitation for fast data acquisition in various time-correlated single photon counting applications, since a commonly adopted approach for dead time mitigation is to operate in the low-flux regime where dead time effects can be ignored. Through the application of lidar ranging, this work explores the empirical distribution of detection times in the presence of dead time and demonstrates that an accurate statistical model can result in reduced ranging error with shorter data acquisition time when operating in the high-flux regime. Specifically, we show that the empirical distribution of detection times converges to the stationary distribution of a Markov chain. Depth estimation can then be performed by passing the empirical distribution through a filter matched to the stationary distribution. Moreover, based on the Markov chain model, we formulate the recovery of arrival distribution from detection distribution as a nonlinear inverse problem and solve it via provably convergent mathematical optimization. By comparing per-detection Fisher information for depth estimation from high- and low-flux detection time distributions, we provide an analytical basis for possible improvement of ranging performance resulting from the presence of dead time. Finally, we demonstrate the effectiveness of our formulation and algorithm via simulations of lidar ranging.Comment: Revision with added estimation results, references, and figures, and modified appendice
    • …
    corecore