3 research outputs found

    Two Pattern Test Cubes for Transition Path Delay Faults Test for ISCAS-85 C432

    Get PDF
    ABSTRACT: Considering full-scan circuits, incompletely-specified tests, or test cubes, are used for test data compression. When considering path delay faults, certain specified input values in a test cube are needed only for determining the lengths of the paths associated with detected faults. Path delay faults, and therefore, small delay defects, would still be detected if such values are unspecified. The goal of this paper is to explore the possibility of increasing the number of unspecified input values in a test set for path delay faults by un specifying such values in order to make the test set more amenable to test data compression. Experimental results indicate that significant numbers of such values exist. The proposed procedure unspecified them gradually to obtain a series of test sets with increasing numbers of unspecified values and decreasing path lengths. Experimental results also indicate that filling the unspecified values randomly (as with some test data compression methods) recovers some or all of the path lengths associated with detected path delay faults. The procedure uses a matching of the sets of detected faults for the comparison of path lengths

    Design-for-delay-testability techniques for high-speed digital circuits

    Get PDF
    The importance of delay faults is enhanced by the ever increasing clock rates and decreasing geometry sizes of nowadays' circuits. This thesis focuses on the development of Design-for-Delay-Testability (DfDT) techniques for high-speed circuits and embedded cores. The rising costs of IC testing and in particular the costs of Automatic Test Equipment are major concerns for the semiconductor industry. To reverse the trend of rising testing costs, DfDT is\ud getting more and more important

    Fast Identification of Robust Dependent Path Delay Faults

    Full text link
    corecore