9 research outputs found

    A Locally Adaptable Iterative RX Detector

    Get PDF
    We present an unsupervised anomaly detection method for hyperspectral imagery (HSI) based on data characteristics inherit in HSI. A locally adaptive technique of iteratively refining the well-known RX detector (LAIRX) is developed. The technique is motivated by the need for better first- and second-order statistic estimation via avoidance of anomaly presence. Overall, experiments show favorable Receiver Operating Characteristic (ROC) curves when compared to a global anomaly detector based upon the Support Vector Data Description (SVDD) algorithm, the conventional RX detector, and decomposed versions of the LAIRX detector. Furthermore, the utilization of parallel and distributed processing allows fast processing time making LAIRX applicable in an operational setting

    Clustering Hyperspectral Imagery for Improved Adaptive Matched Filter Performance

    Get PDF
    This paper offers improvements to adaptive matched filter (AMF) performance by addressing correlation and non-homogeneity problems inherent to hyperspectral imagery (HSI). The estimation of the mean vector and covariance matrix of the background should be calculated using ā€œtarget-freeā€ data. This statement reflects the difficulty that including target data in estimates of the mean vector and covariance matrix of the background could entail. This data could act as statistical outliers and severely contaminate the estimators. This fact serves as the impetus for a 2-stage process: First, attempt to remove the target data from the background by way of the employment of anomaly detectors. Next, with remaining data being relatively ā€œtarget-freeā€ the way is cleared for signature matching. Relative to the first stage, we were able to test seven different anomaly detectors, some of which are designed specifically to deal with the spatial correlation of HSI data and/or the presence of anomalous pixels in local or global mean and covariance estimators. Relative to the second stage, we investigated the use of cluster analytic methods to boost AMF performance. The research shows that accounting for spatial correlation effects in the detector yields nearly ā€œtarget-freeā€ data for use in an AMF that is greatly benefitted through the use of cluster analysis methods

    Ballistic Flash Characterization: Penetration and Back-face Flash

    Get PDF
    The Air Force is extremely concerned with the safety of its people, especially those who are flying aircraft. Aircrew members flying combat missions are concerned with the chance that a fragment from an exploding threat device may penetrate into the airframe to possibly ignite a fire onboard the aircraft. One concern for vulnerability revolves around a flash that may occur when a projectile strikes and penetrates an aircraft\u27s fuselage. When certain fired rounds strike the airframe, they break into fragments called spall. Spall and other fragmentation from an impact often gain enough thermal energy to oxidize the materials involved. This oxidation causes a flash. To help negate these incidents, analysts must be able to predict the flash that can occur when a projectile strikes an aircraft. This research directly continues AFIT work for the 46th Test Group, Survivability Analysis Flight, by examining models to predict the likelihood of penetration of a fragment fired at a target. Empirical live-fire fragment test data are used to create an empirical model of a flash event. The resulting model provides an initial back-face flash modeling capability that can be implemented in joint survivability analysis models

    Automatic Target Recognition for Hyperspectral Imagery

    Get PDF
    Automatic target detection and recognition in hyperspectral imagery offer passive means to detect and identify anomalies based on their material composition. In many combat identification approaches through pattern recognition, a minimum level of confidence is expected with costs associated with labeling anomalies as targets, non-targets or out-of-library. This research approaches the problem by developing a baseline, autonomous four step automatic target recognition (ATR) process: 1) anomaly detection, 2) spectral matching, 3) out-of-library decision, and 4) non-declaration decision. Atmospheric compensation techniques are employed in the initial steps to compare truth library signatures and sensor processed signatures. ATR performance is assessed and additionally contrasted to two modified ATRs to study the effects of including steps three and four. Also explored is the impact on the ATR with two different anomaly detection methods

    Towards the Mitigation of Correlation Effects in the Analysis of Hyperspectral Imagery with Extension to Robust Parameter Design

    Get PDF
    Standard anomaly detectors and classifiers assume data to be uncorrelated and homogeneous, which is not inherent in Hyperspectral Imagery (HSI). To address the detection difficulty, a new method termed Iterative Linear RX (ILRX) uses a line of pixels which shows an advantage over RX, in that it mitigates some of the effects of correlation due to spatial proximity; while the iterative adaptation from Iterative Linear RX (IRX) simultaneously eliminates outliers. In this research, the application of classification algorithms using anomaly detectors to remove potential anomalies from mean vector and covariance matrix estimates and addressing non-homogeneity through cluster analysis, both of which are often ignored when detecting or classifying anomalies, are shown to improve algorithm performance. Global anomaly detectors require the user to provide various parameters to analyze an image. These user-defined settings can be thought of as control variables and certain properties of the imagery can be employed as noise variables. The presence of these separate factors suggests the use of Robust Parameter Design (RPD) to locate optimal settings for an algorithm. This research extends the standard RPD model to include three factor interactions. These new models are then applied to the Autonomous Global Anomaly Detector (AutoGAD) to demonstrate improved setting combinations

    Optimized Hyperspectral Imagery Anomaly Detection Through Robust Parameter Design

    Get PDF
    Anomaly detection algorithms for hyperspectral imagery (HSI) are an important first step in the analysis chain which can reduce the overall amount of data to be processed. The actual amount of data reduced depends greatly on the accuracy of the anomaly detection algorithm implemented. Most, if not all, anomaly detection algorithms require a user to identify some initial parameters. These parameters (or controls) affect overall algorithm performance. Regardless of the anomaly detector being utilized, algorithm performance is often negatively impacted by uncontrollable noise factors which introduce additional variance into the process. In the case of HSI, the noise variables are embedded in the image under consideration. Robust parameter design (RPD) offers a method to model the controls as well as the noise variables and identify robust parameters. This research identifies image noise characteristics necessary to perform RPD on HSI. Additionally, a small sample training and test algorithm is presented. Finally, the standard RPD model is extended to consider higher order noise coefficients. Mean and variance RPD models are optimized in a dual response function suggested by Lin and Tu. Results are presented from simulations and two anomaly detection algorithms, the Reed-Xiaoli anomaly detector and the autonomous global anomaly detector

    Novel Pattern Recognition Techniques for Improved Target Detection in Hyperspectral Imagery

    Get PDF
    A fundamental challenge in target detection in hyperspectral imagery is spectral variability. In target detection applications, we are provided with a pure target signature; we do not have a collection of samples that characterize the spectral variability of the target. Another problem is that the performance of stochastic detection algorithms such as the spectral matched filter can be detrimentally affected by the assumptions of multivariate normality of the data, which are often violated in practical situations. We address the challenge of lack of training samples by creating two models to characterize the target class spectral variability --the first model makes no assumptions regarding inter-band correlation, while the second model uses a first-order Markovbased scheme to exploit correlation between bands. Using these models, we present two techniques for meeting these challenges-the kernel-based support vector data description (SVDD) and spectral fringe-adjusted joint transform correlation (SFJTC). We have developed an algorithm that uses the kernel-based SVDD for use in full-pixel target detection scenarios. We have addressed optimization of the SVDD kernel-width parameter using the golden-section search algorithm for unconstrained optimization. We investigated a proper number of signatures N to generate for the SVDD target class and found that only a small number of training samples is required relative to the dimensionality (number of bands). We have extended decision-level fusion techniques using the majority vote rule for the purpose of alleviating the problem of selecting a proper value of s 2 for either of our target variability models. We have shown that heavy spectral variability may cause SFJTC-based detection to suffer and have addressed this by developing an algorithm that selects an optimal combination of the discrete wavelet transform (DWT) coefficients of the signatures for use as features for detection. For most scenarios, our results show that our SVDD-based detection scheme provides low false positive rates while maintaining higher true positive rates than popular stochastic detection algorithms. Our results also show that our SFJTC-based detection scheme using the DWT coefficients can yield significant detection improvement compared to use of SFJTC using the original signatures and traditional stochastic and deterministic algorithms

    Fast Hyperspectral Anomaly Detection via SVDD

    No full text
    corecore