37 research outputs found

    BAYHENN: Combining Bayesian Deep Learning and Homomorphic Encryption for Secure DNN Inference

    Full text link
    Recently, deep learning as a service (DLaaS) has emerged as a promising way to facilitate the employment of deep neural networks (DNNs) for various purposes. However, using DLaaS also causes potential privacy leakage from both clients and cloud servers. This privacy issue has fueled the research interests on the privacy-preserving inference of DNN models in the cloud service. In this paper, we present a practical solution named BAYHENN for secure DNN inference. It can protect both the client's privacy and server's privacy at the same time. The key strategy of our solution is to combine homomorphic encryption and Bayesian neural networks. Specifically, we use homomorphic encryption to protect a client's raw data and use Bayesian neural networks to protect the DNN weights in a cloud server. To verify the effectiveness of our solution, we conduct experiments on MNIST and a real-life clinical dataset. Our solution achieves consistent latency decreases on both tasks. In particular, our method can outperform the best existing method (GAZELLE) by about 5x, in terms of end-to-end latency.Comment: accepted by IJCAI 2019; camera read

    Toward Lossless Homomorphic Encryption for Scientific Computation

    Full text link
    This paper presents a comprehensive investigation into encrypted computations using the CKKS (Cheon-Kim-Kim-Song) scheme, with a focus on multi-dimensional vector operations and real-world applications. Through two meticulously designed experiments, the study explores the potential of the CKKS scheme in Super Computing and its implications for data privacy and computational efficiency. The first experiment reveals the promising applicability of CKKS to matrix multiplication, indicating marginal differences in Euclidean distance and near-to-zero mean square error across various matrix sizes. The second experiment, applied to a wildfire dataset, illustrates the feasibility of using encrypted machine learning models without significant loss in accuracy. The insights gleaned from the research set a robust foundation for future innovations, including the potential for GPU acceleration in CKKS computations within TenSEAL. Challenges such as noise budget computation, accuracy loss in multiplication, and the distinct characteristics of arithmetic operations in the context of CKKS are also discussed. The paper serves as a vital step towards understanding the complexities and potentials of encrypted computations, with broad implications for secure data processing and privacy preservation in various scientific domains

    Towards the AlexNet Moment for Homomorphic Encryption: HCNN, theFirst Homomorphic CNN on Encrypted Data with GPUs

    Get PDF
    Deep Learning as a Service (DLaaS) stands as a promising solution for cloud-based inference applications. In this setting, the cloud has a pre-learned model whereas the user has samples on which she wants to run the model. The biggest concern with DLaaS is user privacy if the input samples are sensitive data. We provide here an efficient privacy-preserving system by employing high-end technologies such as Fully Homomorphic Encryption (FHE), Convolutional Neural Networks (CNNs) and Graphics Processing Units (GPUs). FHE, with its widely-known feature of computing on encrypted data, empowers a wide range of privacy-concerned applications. This comes at high cost as it requires enormous computing power. In this paper, we show how to accelerate the performance of running CNNs on encrypted data with GPUs. We evaluated two CNNs to classify homomorphically the MNIST and CIFAR-10 datasets. Our solution achieved a sufficient security level (> 80 bit) and reasonable classification accuracy (99%) and (77.55%) for MNIST and CIFAR-10, respectively. In terms of latency, we could classify an image in 5.16 seconds and 304.43 seconds for MNIST and CIFAR-10, respectively. Our system can also classify a batch of images (> 8,000) without extra overhead
    corecore