119,189 research outputs found

    Multi-dimensional real Fourier transform

    Get PDF
    Four subroutines compute one-dimensional and multi-dimensional Fourier transforms for real data, multi-dimensional complex Fourier transforms, and multi-dimensional sine, cosine and sine-cosine transforms. Subroutines use Cooley-Tukey fast Fourier transform. In all but one-dimensional case, transforms are calculated in up to six dimensions

    Composite Cyclotomic Fourier Transforms with Reduced Complexities

    Full text link
    Discrete Fourier transforms~(DFTs) over finite fields have widespread applications in digital communication and storage systems. Hence, reducing the computational complexities of DFTs is of great significance. Recently proposed cyclotomic fast Fourier transforms (CFFTs) are promising due to their low multiplicative complexities. Unfortunately, there are two issues with CFFTs: (1) they rely on efficient short cyclic convolution algorithms, which has not been investigated thoroughly yet, and (2) they have very high additive complexities when directly implemented. In this paper, we address both issues. One of the main contributions of this paper is efficient bilinear 11-point cyclic convolution algorithms, which allow us to construct CFFTs over GF(211)(2^{11}). The other main contribution of this paper is that we propose composite cyclotomic Fourier transforms (CCFTs). In comparison to previously proposed fast Fourier transforms, our CCFTs achieve lower overall complexities for moderate to long lengths, and the improvement significantly increases as the length grows. Our 2047-point and 4095-point CCFTs are also first efficient DFTs of such lengths to the best of our knowledge. Finally, our CCFTs are also advantageous for hardware implementations due to their regular and modular structure.Comment: submitted to IEEE trans on Signal Processin

    Fast Quantum Fourier Transforms for a Class of Non-abelian Groups

    Full text link
    An algorithm is presented allowing the construction of fast Fourier transforms for any solvable group on a classical computer. The special structure of the recursion formula being the core of this algorithm makes it a good starting point to obtain systematically fast Fourier transforms for solvable groups on a quantum computer. The inherent structure of the Hilbert space imposed by the qubit architecture suggests to consider groups of order 2^n first (where n is the number of qubits). As an example, fast quantum Fourier transforms for all 4 classes of non-abelian 2-groups with cyclic normal subgroup of index 2 are explicitly constructed in terms of quantum circuits. The (quantum) complexity of the Fourier transform for these groups of size 2^n is O(n^2) in all cases.Comment: 16 pages, LaTeX2

    A Flexible Implementation of a Matrix Laurent Series-Based 16-Point Fast Fourier and Hartley Transforms

    Full text link
    This paper describes a flexible architecture for implementing a new fast computation of the discrete Fourier and Hartley transforms, which is based on a matrix Laurent series. The device calculates the transforms based on a single bit selection operator. The hardware structure and synthesis are presented, which handled a 16-point fast transform in 65 nsec, with a Xilinx SPARTAN 3E device.Comment: 4 pages, 4 figures. IEEE VI Southern Programmable Logic Conference 201

    Fast computation of magnetostatic fields by Non-uniform Fast Fourier Transforms

    Get PDF
    The bottleneck of micromagnetic simulations is the computation of the long-ranged magnetostatic fields. This can be tackled on regular N-node grids with Fast Fourier Transforms in time N logN, whereas the geometrically more versatile finite element methods (FEM) are bounded to N^4/3 in the best case. We report the implementation of a Non-uniform Fast Fourier Transform algorithm which brings a N logN convergence to FEM, with no loss of accuracy in the results
    corecore