323 research outputs found

    Bayesian Inference of Log Determinants

    Full text link
    The log-determinant of a kernel matrix appears in a variety of machine learning problems, ranging from determinantal point processes and generalized Markov random fields, through to the training of Gaussian processes. Exact calculation of this term is often intractable when the size of the kernel matrix exceeds a few thousand. In the spirit of probabilistic numerics, we reinterpret the problem of computing the log-determinant as a Bayesian inference problem. In particular, we combine prior knowledge in the form of bounds from matrix theory and evidence derived from stochastic trace estimation to obtain probabilistic estimates for the log-determinant and its associated uncertainty within a given computational budget. Beyond its novelty and theoretic appeal, the performance of our proposal is competitive with state-of-the-art approaches to approximating the log-determinant, while also quantifying the uncertainty due to budget-constrained evidence.Comment: 12 pages, 3 figure

    Reducing the Variance of Gaussian Process Hyperparameter Optimization with Preconditioning

    Full text link
    Gaussian processes remain popular as a flexible and expressive model class, but the computational cost of kernel hyperparameter optimization stands as a major limiting factor to their scaling and broader adoption. Recent work has made great strides combining stochastic estimation with iterative numerical techniques, essentially boiling down GP inference to the cost of (many) matrix-vector multiplies. Preconditioning -- a highly effective step for any iterative method involving matrix-vector multiplication -- can be used to accelerate convergence and thus reduce bias in hyperparameter optimization. Here, we prove that preconditioning has an additional benefit that has been previously unexplored. It not only reduces the bias of the log\log-marginal likelihood estimator and its derivatives, but it also simultaneously can reduce variance at essentially negligible cost. We leverage this result to derive sample-efficient algorithms for GP hyperparameter optimization requiring as few as O(log(ε1))\mathcal{O}(\log(\varepsilon^{-1})) instead of O(ε2)\mathcal{O}(\varepsilon^{-2}) samples to achieve error ε\varepsilon. Our theoretical results enable provably efficient and scalable optimization of kernel hyperparameters, which we validate empirically on a set of large-scale benchmark problems. There, variance reduction via preconditioning results in an order of magnitude speedup in hyperparameter optimization of exact GPs

    Suboptimal subspace construction for log-determinant approximation

    Full text link
    Variance reduction is a crucial idea for Monte Carlo simulation and the stochastic Lanczos quadrature method is a dedicated method to approximate the trace of a matrix function. Inspired by their advantages, we combine these two techniques to approximate the log-determinant of large-scale symmetric positive definite matrices. Key questions to be answered for such a method are how to construct or choose an appropriate projection subspace and derive guaranteed theoretical analysis. This paper applies some probabilistic approaches including the projection-cost-preserving sketch and matrix concentration inequalities to construct a suboptimal subspace. Furthermore, we provide some insights on choosing design parameters in the underlying algorithm by deriving corresponding approximation error and probabilistic error estimations. Numerical experiments demonstrate our method's effectiveness and illustrate the quality of the derived error bounds

    An analysis on stochastic Lanczos quadrature with asymmetric quadrature nodes

    Full text link
    The stochastic Lanczos quadrature method has garnered significant attention recently. Upon examination of the error analyses given by Ubaru, Chen and Saad and Cortinovis and Kressner, certain notable inconsistencies arise. It turns out that the former's results are valid for cases with symmetric quadrature nodes and may not be adequate for many practical cases such as estimating log determinant of matrices. This paper analyzes probabilistic error bound of the stochastic Lanczos quadrature method for cases with asymmetric quadrature nodes. Besides, an optimized error allocation technique is employed to minimize the overall number of matrix vector multiplications required by the stochastic Lanczos quadrature method.Comment: 20 pages, 3 figure

    Randomized matrix-free quadrature for spectrum and spectral sum approximation

    Full text link
    We study randomized matrix-free quadrature algorithms for spectrum and spectral sum approximation. The algorithms studied are characterized by the use of a Krylov subspace method to approximate independent and identically distributed samples of vHf[A]v\mathbf{v}^{\sf H}f[\mathbf{A}]\mathbf{v}, where v\mathbf{v} is an isotropic random vector, A\mathbf{A} is a Hermitian matrix, and f[A]f[\mathbf{A}] is a matrix function. This class of algorithms includes the kernel polynomial method and stochastic Lanczos quadrature, two widely used methods for approximating spectra and spectral sums. Our analysis, discussion, and numerical examples provide a unified framework for understanding randomized matrix-free quadrature and shed light on the commonalities and tradeoffs between them. Moreover, this framework provides new insights into the practical implementation and use of these algorithms, particularly with regards to parameter selection in the kernel polynomial method
    corecore