58 research outputs found

    On the Hardness of Partially Dynamic Graph Problems and Connections to Diameter

    Get PDF
    Conditional lower bounds for dynamic graph problems has received a great deal of attention in recent years. While many results are now known for the fully-dynamic case and such bounds often imply worst-case bounds for the partially dynamic setting, it seems much more difficult to prove amortized bounds for incremental and decremental algorithms. In this paper we consider partially dynamic versions of three classic problems in graph theory. Based on popular conjectures we show that: -- No algorithm with amortized update time O(n1ε)O(n^{1-\varepsilon}) exists for incremental or decremental maximum cardinality bipartite matching. This significantly improves on the O(m1/2ε)O(m^{1/2-\varepsilon}) bound for sparse graphs of Henzinger et al. [STOC'15] and O(n1/3ε)O(n^{1/3-\varepsilon}) bound of Kopelowitz, Pettie and Porat. Our linear bound also appears more natural. In addition, the result we present separates the node-addition model from the edge insertion model, as an algorithm with total update time O(mn)O(m\sqrt{n}) exists for the former by Bosek et al. [FOCS'14]. -- No algorithm with amortized update time O(m1ε)O(m^{1-\varepsilon}) exists for incremental or decremental maximum flow in directed and weighted sparse graphs. No such lower bound was known for partially dynamic maximum flow previously. Furthermore no algorithm with amortized update time O(n1ε)O(n^{1-\varepsilon}) exists for directed and unweighted graphs or undirected and weighted graphs. -- No algorithm with amortized update time O(n1/2ε)O(n^{1/2 - \varepsilon}) exists for incremental or decremental (4/3ε)(4/3-\varepsilon')-approximating the diameter of an unweighted graph. We also show a slightly stronger bound if node additions are allowed. [...]Comment: To appear at ICALP'16. Abstract truncated to fit arXiv limit

    Improved Purely Additive Fault-Tolerant Spanners

    Full text link
    Let GG be an unweighted nn-node undirected graph. A \emph{β\beta-additive spanner} of GG is a spanning subgraph HH of GG such that distances in HH are stretched at most by an additive term β\beta w.r.t. the corresponding distances in GG. A natural research goal related with spanners is that of designing \emph{sparse} spanners with \emph{low} stretch. In this paper, we focus on \emph{fault-tolerant} additive spanners, namely additive spanners which are able to preserve their additive stretch even when one edge fails. We are able to improve all known such spanners, in terms of either sparsity or stretch. In particular, we consider the sparsest known spanners with stretch 66, 2828, and 3838, and reduce the stretch to 44, 1010, and 1414, respectively (while keeping the same sparsity). Our results are based on two different constructions. On one hand, we show how to augment (by adding a \emph{small} number of edges) a fault-tolerant additive \emph{sourcewise spanner} (that approximately preserves distances only from a given set of source nodes) into one such spanner that preserves all pairwise distances. On the other hand, we show how to augment some known fault-tolerant additive spanners, based on clustering techniques. This way we decrease the additive stretch without any asymptotic increase in their size. We also obtain improved fault-tolerant additive spanners for the case of one vertex failure, and for the case of ff edge failures.Comment: 17 pages, 4 figures, ESA 201

    Approximating the Diameter of Planar Graphs in Near Linear Time

    Get PDF
    We present a (1+ϵ)(1+\epsilon)-approximation algorithm running in O(f(ϵ)nlog4n)O(f(\epsilon)\cdot n \log^4 n) time for finding the diameter of an undirected planar graph with non-negative edge lengths
    corecore