2,098 research outputs found

    A Multi-Kernel Multi-Code Polar Decoder Architecture

    Get PDF
    Polar codes have received increasing attention in the past decade, and have been selected for the next generation of wireless communication standard. Most research on polar codes has focused on codes constructed from a 2×22\times2 polarization matrix, called binary kernel: codes constructed from binary kernels have code lengths that are bound to powers of 22. A few recent works have proposed construction methods based on multiple kernels of different dimensions, not only binary ones, allowing code lengths different from powers of 22. In this work, we design and implement the first multi-kernel successive cancellation polar code decoder in literature. It can decode any code constructed with binary and ternary kernels: the architecture, sized for a maximum code length NmaxN_{max}, is fully flexible in terms of code length, code rate and kernel sequence. The decoder can achieve frequency of more than 11 GHz in 6565 nm CMOS technology, and a throughput of 615615 Mb/s. The area occupation ranges between 0.110.11 mm2^2 for Nmax=256N_{max}=256 and 2.012.01 mm2^2 for Nmax=4096N_{max}=4096. Implementation results show an unprecedented degree of flexibility: with Nmax=4096N_{max}=4096, up to 5555 code lengths can be decoded with the same hardware, along with any kernel sequence and code rate

    Asymmetric Construction of Low-Latency and Length-Flexible Polar Codes

    Full text link
    Polar codes are a class of capacity-achieving error correcting codes that have been selected for use in enhanced mobile broadband in the 3GPP 5th generation (5G) wireless standard. Most polar code research examines the original Arikan polar coding scheme, which is limited in block length to powers of two. This constraint presents a considerable obstacle since practical applications call for all code lengths to be readily available. Puncturing and shortening techniques allow for flexible polar codes, while multi-kernel polar codes produce native code lengths that are powers of two and/or three. In this work, we propose a new low complexity coding scheme called asymmetric polar coding that allows for any arbitrary block length. We present details on the generator matrix, frozen set design, and decoding schedule. Our scheme offers flexible polar code lengths with decoding complexity lower than equivalent state-of-the-art length-compatible approaches under successive cancellation decoding. Further, asymmetric decoding complexity is directly dependent on the codeword length rather than the nearest valid polar code length. We compare our scheme with other length matching techniques, and simulations are presented. Results show that asymmetric polar codes present similar error correction performance to the competing schemes, while dividing the number of SC decoding operations by up to a factor of 2 using the same codeword lengthComment: To appear in IEEE International Conference on Communications 2019 (Submitted October 12, 2018), 6 page
    • …
    corecore