309 research outputs found

    Optimizing Resource Management in Cloud Analytics Services

    Get PDF
    The fundamental challenge in the cloud today is how to build and optimize machine learning and data analytical services. Machine learning and data analytical platforms are changing computing infrastructure from expensive private data centers to easily accessible online services. These services pack user requests as jobs and run them on thousands of machines in parallel in geo-distributed clusters. The scale and the complexity of emerging jobs lead to increasing challenges for the clusters at all levels, from power infrastructure to system architecture and corresponding software framework design. These challenges come in many forms. Today's clusters are built on commodity hardware and hardware failures are unavoidable. Resource competition, network congestion, and mixed generations of hardware make the hardware environment complex and hard to model and predict. Such heterogeneity becomes a crucial roadblock for efficient parallelization on both the task level and job level. Another challenge comes from the increasing complexity of the applications. For example, machine learning services run jobs made up of multiple tasks with complex dependency structures. This complexity leads to difficulties in framework designs. The scale, especially when services span geo-distributed clusters, leads to another important hurdle for cluster design. Challenges also come from the power infrastructure. Power infrastructure is very expensive and accounts for more than 20% of the total costs to build a cluster. Power sharing optimization to maximize the facility utilization and smooth peak hour usages is another roadblock for cluster design. In this thesis, we focus on solutions for these challenges at the task level, on the job level, with respect to the geo-distributed data cloud design and for power management in colocation data centers. At the task level, a crucial hurdle to achieving predictable performance is stragglers, i.e., tasks that take significantly longer than expected to run. At this point, speculative execution has been widely adopted to mitigate the impact of stragglers in simple workloads. We apply straggler mitigation for approximation jobs for the first time. We present GRASS, which carefully uses speculation to mitigate the impact of stragglers in approximation jobs. GRASS's design is based on the analysis of a model we develop to capture the optimal speculation levels for approximation jobs. Evaluations with production workloads from Facebook and Microsoft Bing in an EC2 cluster of 200 nodes show that GRASS increases accuracy of deadline-bound jobs by 47% and speeds up error-bound jobs by 38%. Moving from task level to job level, task level speculation mechanisms are designed and operated independently of job scheduling when, in fact, scheduling a speculative copy of a task has a direct impact on the resources available for other jobs. Thus, we present Hopper, a job-level speculation-aware scheduler that integrates the tradeoffs associated with speculation into job scheduling decisions based on a model generalized from the task-level speculation model. We implement both centralized and decentralized prototypes of the Hopper scheduler and show that 50% (66%) improvements over state-of-the-art centralized (decentralized) schedulers and speculation strategies can be achieved through the coordination of scheduling and speculation. As computing resources move from local clusters to geo-distributed cloud services, we are expecting the same transformation for data storage. We study two crucial pieces of a geo-distributed data cloud system: data acquisition and data placement. Starting from developing the optimal algorithm for the case of a data cloud made up of a single data center, we propose a near-optimal, polynomial-time algorithm for a geo-distributed data cloud in general. We show, via a case study, that the resulting design, Datum, is near-optimal (within 1.6%) in practical settings. Efficient power management is a fundamental challenge for data centers when providing reliable services. Power oversubscription in data centers is very common and may occasionally trigger an emergency when the aggregate power demand exceeds the capacity. We study power capping solutions for handling such emergencies in a colocation data center, where the operator supplies power to multiple tenants. We propose a novel market mechanism based on supply function bidding, called COOP, to financially incentivize and coordinate tenants' power reduction for minimizing total performance loss while satisfying multiple power capping constraints. We demonstrate that COOP is "win-win", increasing the operator's profit (through oversubscription) and reducing tenants' costs (through financial compensation for their power reduction during emergencies).</p

    Cloud computing: survey on energy efficiency

    Get PDF
    International audienceCloud computing is today’s most emphasized Information and Communications Technology (ICT) paradigm that is directly or indirectly used by almost every online user. However, such great significance comes with the support of a great infrastructure that includes large data centers comprising thousands of server units and other supporting equipment. Their share in power consumption generates between 1.1% and 1.5% of the total electricity use worldwide and is projected to rise even more. Such alarming numbers demand rethinking the energy efficiency of such infrastructures. However, before making any changes to infrastructure, an analysis of the current status is required. In this article, we perform a comprehensive analysis of an infrastructure supporting the cloud computing paradigm with regards to energy efficiency. First, we define a systematic approach for analyzing the energy efficiency of most important data center domains, including server and network equipment, as well as cloud management systems and appliances consisting of a software utilized by end users. Second, we utilize this approach for analyzing available scientific and industrial literature on state-of-the-art practices in data centers and their equipment. Finally, we extract existing challenges and highlight future research directions

    Online Power Management for Multi-cores: A Reinforcement Learning Based Approach

    Get PDF
    Power and energy is the first-class design constraint for multi-core processors and is a limiting factor for future-generation supercomputers. While modern processor design provides a wide range of mechanisms for power and energy optimization, it remains unclear how software can make the best use of them. This paper presents a novel approach for runtime power optimization on modern multi-core systems. Our policy combines power capping and uncore frequency scaling to match the hardware power profile to the dynamically changing program behavior at runtime. We achieve this by employing reinforcement learning (RL) to automatically explore the energy-performance optimization space from training programs, learning the subtle relationships between the hardware power profile, the program characteristics, power consumption and program running times. Our RL framework then uses the learned knowledge to adapt the chips power budget and uncore frequency to match the changing program phases for any new, previously unseen program. We evaluate our approach on two computing clusters by applying our techniques to 11 parallel programs that were not seen by our RL framework at the training stage. Experimental results show that our approach can reduce the system-level energy consumption by 12%, on average, with less than 3% of slowdown on the application performance. By lowering the uncore frequency to leave more energy budget to allow the processor cores to run at a higher frequency, our approach can reduce the energy consumption by up to 17% while improving the application performance by 5% for specific workloads

    Real-Time Wireless Sensor-Actuator Networks for Cyber-Physical Systems

    Get PDF
    A cyber-physical system (CPS) employs tight integration of, and coordination between computational, networking, and physical elements. Wireless sensor-actuator networks provide a new communication technology for a broad range of CPS applications such as process control, smart manufacturing, and data center management. Sensing and control in these systems need to meet stringent real-time performance requirements on communication latency in challenging environments. There have been limited results on real-time scheduling theory for wireless sensor-actuator networks. Real-time transmission scheduling and analysis for wireless sensor-actuator networks requires new methodologies to deal with unique characteristics of wireless communication. Furthermore, the performance of a wireless control involves intricate interactions between real-time communication and control. This thesis research tackles these challenges and make a series of contributions to the theory and system for wireless CPS. (1) We establish a new real-time scheduling theory for wireless sensor-actuator networks. (2) We develop a scheduling-control co-design approach for holistic optimization of control performance in a wireless control system. (3) We design and implement a wireless sensor-actuator network for CPS in data center power management. (4) We expand our research to develop scheduling algorithms and analyses for real-time parallel computing to support computation-intensive CPS

    Ad-hoc Stream Adaptive Protocol

    Get PDF
    With the growing market of smart-phones, sophisticated applications that do extensive computation are common on mobile platform; and with consumers’ high expectation of technologies to stay connected on the go, academic researchers and industries have been making efforts to find ways to stream multimedia contents to mobile devices. However, the restricted wireless channel bandwidth, unstable nature of wireless channels, and unpredictable nature of mobility, has been the major road block for wireless streaming advance forward. In this paper, various recent studies on mobility and P2P system proposal are explained and analyzed, and propose a new design based on existing P2P systems, aimed to solve the wireless and mobility issues

    SoC-Cluster as an Edge Server: an Application-driven Measurement Study

    Full text link
    Huge electricity consumption is a severe issue for edge data centers. To this end, we propose a new form of edge server, namely SoC-Cluster, that orchestrates many low-power mobile system-on-chips (SoCs) through an on-chip network. For the first time, we have developed a concrete SoC-Cluster server that consists of 60 Qualcomm Snapdragon 865 SoCs in a 2U rack. Such a server has been commercialized successfully and deployed in large scale on edge clouds. The current dominant workload on those deployed SoC-Clusters is cloud gaming, as mobile SoCs can seamlessly run native mobile games. The primary goal of this work is to demystify whether SoC-Cluster can efficiently serve more general-purpose, edge-typical workloads. Therefore, we built a benchmark suite that leverages state-of-the-art libraries for two killer edge workloads, i.e., video transcoding and deep learning inference. The benchmark comprehensively reports the performance, power consumption, and other application-specific metrics. We then performed a thorough measurement study and directly compared SoC-Cluster with traditional edge servers (with Intel CPU and NVIDIA GPU) with respect to physical size, electricity, and billing. The results reveal the advantages of SoC-Cluster, especially its high energy efficiency and the ability to proportionally scale energy consumption with various incoming loads, as well as its limitations. The results also provide insightful implications and valuable guidance to further improve SoC-Cluster and land it in broader edge scenarios
    • …
    corecore