4,576 research outputs found

    Moments of spectral functions: Monte Carlo evaluation and verification

    Full text link
    The subject of the present study is the Monte Carlo path-integral evaluation of the moments of spectral functions. Such moments can be computed by formal differentiation of certain estimating functionals that are infinitely-differentiable against time whenever the potential function is arbitrarily smooth. Here, I demonstrate that the numerical differentiation of the estimating functionals can be more successfully implemented by means of pseudospectral methods (e.g., exact differentiation of a Chebyshev polynomial interpolant), which utilize information from the entire interval (β/2,β/2)(-\beta \hbar / 2, \beta \hbar/2). The algorithmic detail that leads to robust numerical approximations is the fact that the path integral action and not the actual estimating functional are interpolated. Although the resulting approximation to the estimating functional is non-linear, the derivatives can be computed from it in a fast and stable way by contour integration in the complex plane, with the help of the Cauchy integral formula (e.g., by Lyness' method). An interesting aspect of the present development is that Hamburger's conditions for a finite sequence of numbers to be a moment sequence provide the necessary and sufficient criteria for the computed data to be compatible with the existence of an inversion algorithm. Finally, the issue of appearance of the sign problem in the computation of moments, albeit in a milder form than for other quantities, is addressed.Comment: 13 pages, 2 figure

    Moment-Sum-Of-Squares Approach For Fast Risk Estimation In Uncertain Environments

    Full text link
    In this paper, we address the risk estimation problem where one aims at estimating the probability of violation of safety constraints for a robot in the presence of bounded uncertainties with arbitrary probability distributions. In this problem, an unsafe set is described by level sets of polynomials that is, in general, a non-convex set. Uncertainty arises due to the probabilistic parameters of the unsafe set and probabilistic states of the robot. To solve this problem, we use a moment-based representation of probability distributions. We describe upper and lower bounds of the risk in terms of a linear weighted sum of the moments. Weights are coefficients of a univariate Chebyshev polynomial obtained by solving a sum-of-squares optimization problem in the offline step. Hence, given a finite number of moments of probability distributions, risk can be estimated in real-time. We demonstrate the performance of the provided approach by solving probabilistic collision checking problems where we aim to find the probability of collision of a robot with a non-convex obstacle in the presence of probabilistic uncertainties in the location of the robot and size, location, and geometry of the obstacle.Comment: 57th IEEE Conference on Decision and Control 201

    Network Density of States

    Full text link
    Spectral analysis connects graph structure to the eigenvalues and eigenvectors of associated matrices. Much of spectral graph theory descends directly from spectral geometry, the study of differentiable manifolds through the spectra of associated differential operators. But the translation from spectral geometry to spectral graph theory has largely focused on results involving only a few extreme eigenvalues and their associated eigenvalues. Unlike in geometry, the study of graphs through the overall distribution of eigenvalues - the spectral density - is largely limited to simple random graph models. The interior of the spectrum of real-world graphs remains largely unexplored, difficult to compute and to interpret. In this paper, we delve into the heart of spectral densities of real-world graphs. We borrow tools developed in condensed matter physics, and add novel adaptations to handle the spectral signatures of common graph motifs. The resulting methods are highly efficient, as we illustrate by computing spectral densities for graphs with over a billion edges on a single compute node. Beyond providing visually compelling fingerprints of graphs, we show how the estimation of spectral densities facilitates the computation of many common centrality measures, and use spectral densities to estimate meaningful information about graph structure that cannot be inferred from the extremal eigenpairs alone.Comment: 10 pages, 7 figure
    corecore