32,272 research outputs found

    Arcfinder: An algorithm for the automatic detection of gravitational arcs

    Full text link
    We present an efficient algorithm designed for and capable of detecting elongated, thin features such as lines and curves in astronomical images, and its application to the automatic detection of gravitational arcs. The algorithm is sufficiently robust to detect such features even if their surface brightness is near the pixel noise in the image, yet the amount of spurious detections is low. The algorithm subdivides the image into a grid of overlapping cells which are iteratively shifted towards a local centre of brightness in their immediate neighbourhood. It then computes the ellipticity for each cell, and combines cells with correlated ellipticities into objects. These are combined to graphs in a next step, which are then further processed to determine properties of the detected objects. We demonstrate the operation and the efficiency of the algorithm applying it to HST images of galaxy clusters known to contain gravitational arcs. The algorithm completes the analysis of an image with 3000x3000 pixels in about 4 seconds on an ordinary desktop PC. We discuss further applications, the method's remaining problems and possible approaches to their solution.Comment: 12 pages, 12 figure

    Automated Generation of Geometric Theorems from Images of Diagrams

    Full text link
    We propose an approach to generate geometric theorems from electronic images of diagrams automatically. The approach makes use of techniques of Hough transform to recognize geometric objects and their labels and of numeric verification to mine basic geometric relations. Candidate propositions are generated from the retrieved information by using six strategies and geometric theorems are obtained from the candidates via algebraic computation. Experiments with a preliminary implementation illustrate the effectiveness and efficiency of the proposed approach for generating nontrivial theorems from images of diagrams. This work demonstrates the feasibility of automated discovery of profound geometric knowledge from simple image data and has potential applications in geometric knowledge management and education.Comment: 31 pages. Submitted to Annals of Mathematics and Artificial Intelligence (special issue on Geometric Reasoning

    Wavelet-based cross-correlation analysis of structure scaling in turbulent clouds

    Full text link
    We propose a statistical tool to compare the scaling behaviour of turbulence in pairs of molecular cloud maps. Using artificial maps with well defined spatial properties, we calibrate the method and test its limitations to ultimately apply it to a set of observed maps. We develop the wavelet-based weighted cross-correlation (WWCC) method to study the relative contribution of structures of different sizes and their degree of correlation in two maps as a function of spatial scale, and the mutual displacement of structures in the molecular cloud maps. We test the WWCC for circular structures having a single prominent scale and fractal structures showing a self-similar behavior without prominent scales. Observational noise and a finite map size limit the scales where the cross-correlation coefficients and displacement vectors can be reliably measured. For fractal maps containing many structures on all scales, the limitation from the observational noise is negligible for signal-to-noise ratios >5. (abbrev). Application of the WWCC to the observed line maps of the giant molecular cloud G333 allows to add specific scale information to the results obtained earlier using the principle component analysis. It confirms the chemical and excitation similarity of 13^{13}CO and C18^{18}O on all scales, but shows a deviation of HCN at scales of up to 7' (~7 pc). This can be interpreted as a chemical transition scale. The largest structures also show a systematic offset along the filament, probably due to a large-scale density gradient. The WWCC can compare correlated structures in different maps of molecular clouds identifying scales that represent structural changes such as chemical and phase transitions and prominent or enhanced dimensions.Comment: 26 pages, 41 figures, accepted to A&
    corecore