2,530 research outputs found

    Fast Cell Discovery in mm-wave 5G Networks with Context Information

    Full text link
    The exploitation of mm-wave bands is one of the key-enabler for 5G mobile radio networks. However, the introduction of mm-wave technologies in cellular networks is not straightforward due to harsh propagation conditions that limit the mm-wave access availability. Mm-wave technologies require high-gain antenna systems to compensate for high path loss and limited power. As a consequence, directional transmissions must be used for cell discovery and synchronization processes: this can lead to a non-negligible access delay caused by the exploration of the cell area with multiple transmissions along different directions. The integration of mm-wave technologies and conventional wireless access networks with the objective of speeding up the cell search process requires new 5G network architectural solutions. Such architectures introduce a functional split between C-plane and U-plane, thereby guaranteeing the availability of a reliable signaling channel through conventional wireless technologies that provides the opportunity to collect useful context information from the network edge. In this article, we leverage the context information related to user positions to improve the directional cell discovery process. We investigate fundamental trade-offs of this process and the effects of the context information accuracy on the overall system performance. We also cope with obstacle obstructions in the cell area and propose an approach based on a geo-located context database where information gathered over time is stored to guide future searches. Analytic models and numerical results are provided to validate proposed strategies.Comment: 14 pages, submitted to IEEE Transaction on Mobile Computin

    Context Information for Fast Cell Discovery in mm-wave 5G Networks

    Full text link
    The exploitation of the mm-wave bands is one of the most promising solutions for 5G mobile radio networks. However, the use of mm-wave technologies in cellular networks is not straightforward due to mm-wave harsh propagation conditions that limit access availability. In order to overcome this obstacle, hybrid network architectures are being considered where mm-wave small cells can exploit an overlay coverage layer based on legacy technology. The additional mm-wave layer can also take advantage of a functional split between control and user plane, that allows to delegate most of the signaling functions to legacy base stations and to gather context information from users for resource optimization. However, mm-wave technology requires high gain antenna systems to compensate for high path loss and limited power, e.g., through the use of multiple antennas for high directivity. Directional transmissions must be also used for the cell discovery and synchronization process, and this can lead to a non-negligible delay due to the need to scan the cell area with multiple transmissions at different directions. In this paper, we propose to exploit the context information related to user position, provided by the separated control plane, to improve the cell discovery procedure and minimize delay. We investigate the fundamental trade-offs of the cell discovery process with directional antennas and the effects of the context information accuracy on its performance. Numerical results are provided to validate our observations.Comment: 6 pages, 8 figures, in Proceedings of European Wireless 201

    Statistical Approaches for Initial Access in mmWave 5G Systems

    Full text link
    mmWave communication systems overcome high attenuation by using multiple antennas at both the transmitter and the receiver to perform beamforming. Upon entrance of a user equipment (UE) into a cell a scanning procedure must be performed by the base station in order to find the UE, in what is known as initial access (IA) procedure. In this paper we start from the observation that UEs are more likely to enter from some directions than from others, as they typically move along streets, while other movements are impossible due to the presence of obstacles. Moreover, users are entering with a given time statistics, for example described by inter-arrival times. In this context we propose scanning strategies for IA that take into account the entrance statistics. In particular, we propose two approaches: a memory-less random illumination (MLRI) algorithm and a statistic and memory-based illumination (SMBI) algorithm. The MLRI algorithm scans a random sector in each slot, based on the statistics of sector entrance, without memory. The SMBI algorithm instead scans sectors in a deterministic sequence selected according to the statistics of sector entrance and time of entrance, and taking into account the fact that the user has not yet been discovered (thus including memory). We assess the performance of the proposed methods in terms of average discovery time

    Initial Access in 5G mm-Wave Cellular Networks

    Full text link
    The massive amounts of bandwidth available at millimeter-wave frequencies (roughly above 10 GHz) have the potential to greatly increase the capacity of fifth generation cellular wireless systems. However, to overcome the high isotropic pathloss experienced at these frequencies, high directionality will be required at both the base station and the mobile user equipment to establish sufficient link budget in wide area networks. This reliance on directionality has important implications for control layer procedures. Initial access in particular can be significantly delayed due to the need for the base station and the user to find the proper alignment for directional transmission and reception. This paper provides a survey of several recently proposed techniques for this purpose. A coverage and delay analysis is performed to compare various techniques including exhaustive and iterative search, and Context Information based algorithms. We show that the best strategy depends on the target SNR regime, and provide guidelines to characterize the optimal choice as a function of the system parameters.Comment: 6 pages, 3 figures, 3 tables, 15 references, submitted to IEEE COMMAG 201

    Context Information Based Initial Cell Search for Millimeter Wave 5G Cellular Networks

    Full text link
    Millimeter wave (mmWave) communication is envisioned as a cornerstone to fulfill the data rate requirements for fifth generation (5G) cellular networks. In mmWave communication, beamforming is considered as a key technology to combat the high path-loss, and unlike in conventional microwave communication, beamforming may be necessary even during initial access/cell search. Among the proposed beamforming schemes for initial cell search, analog beamforming is a power efficient approach but suffers from its inherent search delay during initial access. In this work, we argue that analog beamforming can still be a viable choice when context information about mmWave base stations (BS) is available at the mobile station (MS). We then study how the performance of analog beamforming degrades in case of angular errors in the available context information. Finally, we present an analog beamforming receiver architecture that uses multiple arrays of Phase Shifters and a single RF chain to combat the effect of angular errors, showing that it can achieve the same performance as hybrid beamforming

    An Efficient Uplink Multi-Connectivity Scheme for 5G mmWave Control Plane Applications

    Full text link
    The millimeter wave (mmWave) frequencies offer the potential of orders of magnitude increases in capacity for next-generation cellular systems. However, links in mmWave networks are susceptible to blockage and may suffer from rapid variations in quality. Connectivity to multiple cells - at mmWave and/or traditional frequencies - is considered essential for robust communication. One of the challenges in supporting multi-connectivity in mmWaves is the requirement for the network to track the direction of each link in addition to its power and timing. To address this challenge, we implement a novel uplink measurement system that, with the joint help of a local coordinator operating in the legacy band, guarantees continuous monitoring of the channel propagation conditions and allows for the design of efficient control plane applications, including handover, beam tracking and initial access. We show that an uplink-based multi-connectivity approach enables less consuming, better performing, faster and more stable cell selection and scheduling decisions with respect to a traditional downlink-based standalone scheme. Moreover, we argue that the presented framework guarantees (i) efficient tracking of the user in the presence of the channel dynamics expected at mmWaves, and (ii) fast reaction to situations in which the primary propagation path is blocked or not available.Comment: Submitted for publication in IEEE Transactions on Wireless Communications (TWC

    Obstacle Avoidance Cell Discovery using mm-waves Directive Antennas in 5G Networks

    Get PDF
    With the advent of next-generation mobile devices, wireless networks must be upgraded to fill the gap between huge user data demands and scarce channel capacity. Mm-waves tech- nologies appear as the key-enabler for the future 5G networks design, exhibiting large bandwidth availability and high data rate. As counterpart, the small wave-length incurs in a harsh signal propagation that limits the transmission range. To overcome this limitation, array of antennas with a relatively high number of small elements are used to exploit beamforming techniques that greatly increase antenna directionality both at base station and user terminal. These very narrow beams are used during data transfer and tracking techniques dynamically adapt the direction according to terminal mobility. During cell discovery when initial synchronization must be acquired, however, directionality can delay the process since the best direction to point the beam is unknown. All space must be scanned using the tradeoff between beam width and transmission range. Some support to speed up the cell search process can come from the new architectures for 5G currently being investigated, where conventional wireless network and mm-waves technologies coexist. In these architecture a functional split between C-plane and U-plane allows to guarantee the continuous availability of a signaling channel through conventional wireless technologies with the opportunity to convey context information from users to network. In this paper, we investigate the use of position information provided by user terminals in order to improve the performance of the cell search process. We analyze mm-wave propagation environment and show how it is possible to take into account of position inaccuracy and reflected rays in presence of obstacle
    • …
    corecore