6,528 research outputs found

    Geometry-based Adaptive Symbolic Approximation for Fast Sequence Matching on Manifolds

    Full text link
    In this paper, we consider the problem of fast and efficient indexing techniques for sequences evolving in non-Euclidean spaces. This problem has several applications in the areas of human activity analysis, where there is a need to perform fast search, and recognition in very high dimensional spaces. The problem is made more challenging when representations such as landmarks, contours, and human skeletons etc. are naturally studied in a non-Euclidean setting where even simple operations are much more computationally intensive than their Euclidean counterparts. We propose a geometry and data adaptive symbolic framework that is shown to enable the deployment of fast and accurate algorithms for activity recognition, dynamic texture recognition, motif discovery. Toward this end, we present generalizations of key concepts of piece-wise aggregation and symbolic approximation for the case of non-Euclidean manifolds. We show that one can replace expensive geodesic computations with much faster symbolic computations with little loss of accuracy in activity recognition and discovery applications. The framework is general enough to work across both Euclidean and non-Euclidean spaces, depending on appropriate feature representations without compromising on the ultra-low bandwidth, high speed and high accuracy. The proposed methods are ideally suited for real-time systems and low complexity scenarios.Comment: Under major revision at IJC

    Fast and Globally Optimal Rigid Registration of 3D Point Sets by Transformation Decomposition

    Full text link
    The rigid registration of two 3D point sets is a fundamental problem in computer vision. The current trend is to solve this problem globally using the BnB optimization framework. However, the existing global methods are slow for two main reasons: the computational complexity of BnB is exponential to the problem dimensionality (which is six for 3D rigid registration), and the bound evaluation used in BnB is inefficient. In this paper, we propose two techniques to address these problems. First, we introduce the idea of translation invariant vectors, which allows us to decompose the search of a 6D rigid transformation into a search of 3D rotation followed by a search of 3D translation, each of which is solved by a separate BnB algorithm. This transformation decomposition reduces the problem dimensionality of BnB algorithms and substantially improves its efficiency. Then, we propose a new data structure, named 3D Integral Volume, to accelerate the bound evaluation in both BnB algorithms. By combining these two techniques, we implement an efficient algorithm for rigid registration of 3D point sets. Extensive experiments on both synthetic and real data show that the proposed algorithm is three orders of magnitude faster than the existing state-of-the-art global methods.Comment: 17pages, 16 figures and 6 table

    OATM: Occlusion Aware Template Matching by Consensus Set Maximization

    Full text link
    We present a novel approach to template matching that is efficient, can handle partial occlusions, and comes with provable performance guarantees. A key component of the method is a reduction that transforms the problem of searching a nearest neighbor among NN high-dimensional vectors, to searching neighbors among two sets of order N\sqrt{N} vectors, which can be found efficiently using range search techniques. This allows for a quadratic improvement in search complexity, and makes the method scalable in handling large search spaces. The second contribution is a hashing scheme based on consensus set maximization, which allows us to handle occlusions. The resulting scheme can be seen as a randomized hypothesize-and-test algorithm, which is equipped with guarantees regarding the number of iterations required for obtaining an optimal solution with high probability. The predicted matching rates are validated empirically and the algorithm shows a significant improvement over the state-of-the-art in both speed and robustness to occlusions.Comment: to appear at cvpr 201

    A Survey on Non-rigid 3D Shape Analysis

    Full text link
    Shape is an important physical property of natural and manmade 3D objects that characterizes their external appearances. Understanding differences between shapes and modeling the variability within and across shape classes, hereinafter referred to as \emph{shape analysis}, are fundamental problems to many applications, ranging from computer vision and computer graphics to biology and medicine. This chapter provides an overview of some of the recent techniques that studied the shape of 3D objects that undergo non-rigid deformations including bending and stretching. Recent surveys that covered some aspects such classification, retrieval, recognition, and rigid or nonrigid registration, focused on methods that use shape descriptors. Descriptors, however, provide abstract representations that do not enable the exploration of shape variability. In this chapter, we focus on recent techniques that treated the shape of 3D objects as points in some high dimensional space where paths describe deformations. Equipping the space with a suitable metric enables the quantification of the range of deformations of a given shape, which in turn enables (1) comparing and classifying 3D objects based on their shape, (2) computing smooth deformations, i.e. geodesics, between pairs of objects, and (3) modeling and exploring continuous shape variability in a collection of 3D models. This article surveys and classifies recent developments in this field, outlines fundamental issues, discusses their potential applications in computer vision and graphics, and highlights opportunities for future research. Our primary goal is to bridge the gap between various techniques that have been often independently proposed by different communities including mathematics and statistics, computer vision and graphics, and medical image analysis

    Model-Driven Feed-Forward Prediction for Manipulation of Deformable Objects

    Full text link
    Robotic manipulation of deformable objects is a difficult problem especially because of the complexity of the many different ways an object can deform. Searching such a high dimensional state space makes it difficult to recognize, track, and manipulate deformable objects. In this paper, we introduce a predictive, model-driven approach to address this challenge, using a pre-computed, simulated database of deformable object models. Mesh models of common deformable garments are simulated with the garments picked up in multiple different poses under gravity, and stored in a database for fast and efficient retrieval. To validate this approach, we developed a comprehensive pipeline for manipulating clothing as in a typical laundry task. First, the database is used for category and pose estimation for a garment in an arbitrary position. A fully featured 3D model of the garment is constructed in real-time and volumetric features are then used to obtain the most similar model in the database to predict the object category and pose. Second, the database can significantly benefit the manipulation of deformable objects via non-rigid registration, providing accurate correspondences between the reconstructed object model and the database models. Third, the accurate model simulation can also be used to optimize the trajectories for manipulation of deformable objects, such as the folding of garments. Extensive experimental results are shown for the tasks above using a variety of different clothing.Comment: 21 pages, 27 figure

    Globally Optimal Joint Image Segmentation and Shape Matching Based on Wasserstein Modes

    Full text link
    A functional for joint variational object segmentation and shape matching is developed. The formulation is based on optimal transport w.r.t. geometric distance and local feature similarity. Geometric invariance and modelling of object-typical statistical variations is achieved by introducing degrees of freedom that describe transformations and deformations of the shape template. The shape model is mathematically equivalent to contour-based approaches but inference can be performed without conversion between the contour and region representations, allowing combination with other convex segmentation approaches and simplifying optimization. While the overall functional is non-convex, non-convexity is confined to a low-dimensional variable. We propose a locally optimal alternating optimization scheme and a globally optimal branch and bound scheme, based on adaptive convex relaxation. Combining both methods allows to eliminate the delicate initialization problem inherent to many contour based approaches while remaining computationally practical. The properties of the functional, its ability to adapt to a wide range of input data structures and the different optimization schemes are illustrated and compared by numerical experiments.Comment: 31 pages, 16 figures. Accepted by Journal of Mathematical Imaging and Vision, published online. Printed publication pendin

    Recent Advance in Content-based Image Retrieval: A Literature Survey

    Full text link
    The explosive increase and ubiquitous accessibility of visual data on the Web have led to the prosperity of research activity in image search or retrieval. With the ignorance of visual content as a ranking clue, methods with text search techniques for visual retrieval may suffer inconsistency between the text words and visual content. Content-based image retrieval (CBIR), which makes use of the representation of visual content to identify relevant images, has attracted sustained attention in recent two decades. Such a problem is challenging due to the intention gap and the semantic gap problems. Numerous techniques have been developed for content-based image retrieval in the last decade. The purpose of this paper is to categorize and evaluate those algorithms proposed during the period of 2003 to 2016. We conclude with several promising directions for future research.Comment: 22 page

    Squiggle - A Glyph Recognizer for Gesture Input

    Full text link
    Squiggle is a template-based glyph recognizer in the lineage of `$1 Recognizer' and `Protractor'. It seeks a good fit linear affine mapping between the input and template glyphs which are represented as a list of milestone points along the glyph path. The algorithm can recognize input glyphs invariant of rotation, scaling, skew, and reflection symmetries. In practice the algorithm is fast and robust enough to recognize user-generated glyphs as they are being drawn in real time, and to project `shadows' of the matching templates as feedback.Comment: 10 page

    A Performance Evaluation of Local Features for Image Based 3D Reconstruction

    Full text link
    This paper performs a comprehensive and comparative evaluation of the state of the art local features for the task of image based 3D reconstruction. The evaluated local features cover the recently developed ones by using powerful machine learning techniques and the elaborately designed handcrafted features. To obtain a comprehensive evaluation, we choose to include both float type features and binary ones. Meanwhile, two kinds of datasets have been used in this evaluation. One is a dataset of many different scene types with groundtruth 3D points, containing images of different scenes captured at fixed positions, for quantitative performance evaluation of different local features in the controlled image capturing situations. The other dataset contains Internet scale image sets of several landmarks with a lot of unrelated images, which is used for qualitative performance evaluation of different local features in the free image collection situations. Our experimental results show that binary features are competent to reconstruct scenes from controlled image sequences with only a fraction of processing time compared to use float type features. However, for the case of large scale image set with many distracting images, float type features show a clear advantage over binary ones

    Profile Based Sub-Image Search in Image Databases

    Full text link
    Sub-image search with high accuracy in natural images still remains a challenging problem. This paper proposes a new feature vector called profile for a keypoint in a bag of visual words model of an image. The profile of a keypoint captures the spatial geometry of all the other keypoints in an image with respect to itself, and is very effective in discriminating true matches from false matches. Sub-image search using profiles is a single-phase process requiring no geometric validation, yields high precision on natural images, and works well on small visual codebook. The proposed search technique differs from traditional methods that first generate a set of candidates disregarding spatial information and then verify them geometrically. Conventional methods also use large codebooks. We achieve a precision of 81% on a combined data set of synthetic and real natural images using a codebook size of 500 for top-10 queries; that is 31% higher than the conventional candidate generation approach.Comment: Sub-Image Retrieval, New Feature Vector, Similarit
    • …
    corecore