2,147 research outputs found

    Computational Methods for Sparse Solution of Linear Inverse Problems

    Get PDF
    The goal of the sparse approximation problem is to approximate a target signal using a linear combination of a few elementary signals drawn from a fixed collection. This paper surveys the major practical algorithms for sparse approximation. Specific attention is paid to computational issues, to the circumstances in which individual methods tend to perform well, and to the theoretical guarantees available. Many fundamental questions in electrical engineering, statistics, and applied mathematics can be posed as sparse approximation problems, making these algorithms versatile and relevant to a plethora of applications

    Parallel Selective Algorithms for Big Data Optimization

    Full text link
    We propose a decomposition framework for the parallel optimization of the sum of a differentiable (possibly nonconvex) function and a (block) separable nonsmooth, convex one. The latter term is usually employed to enforce structure in the solution, typically sparsity. Our framework is very flexible and includes both fully parallel Jacobi schemes and Gauss- Seidel (i.e., sequential) ones, as well as virtually all possibilities "in between" with only a subset of variables updated at each iteration. Our theoretical convergence results improve on existing ones, and numerical results on LASSO, logistic regression, and some nonconvex quadratic problems show that the new method consistently outperforms existing algorithms.Comment: This work is an extended version of the conference paper that has been presented at IEEE ICASSP'14. The first and the second author contributed equally to the paper. This revised version contains new numerical results on non convex quadratic problem

    Nonconvex Nonsmooth Low-Rank Minimization via Iteratively Reweighted Nuclear Norm

    Full text link
    The nuclear norm is widely used as a convex surrogate of the rank function in compressive sensing for low rank matrix recovery with its applications in image recovery and signal processing. However, solving the nuclear norm based relaxed convex problem usually leads to a suboptimal solution of the original rank minimization problem. In this paper, we propose to perform a family of nonconvex surrogates of L0L_0-norm on the singular values of a matrix to approximate the rank function. This leads to a nonconvex nonsmooth minimization problem. Then we propose to solve the problem by Iteratively Reweighted Nuclear Norm (IRNN) algorithm. IRNN iteratively solves a Weighted Singular Value Thresholding (WSVT) problem, which has a closed form solution due to the special properties of the nonconvex surrogate functions. We also extend IRNN to solve the nonconvex problem with two or more blocks of variables. In theory, we prove that IRNN decreases the objective function value monotonically, and any limit point is a stationary point. Extensive experiments on both synthesized data and real images demonstrate that IRNN enhances the low-rank matrix recovery compared with state-of-the-art convex algorithms

    Robust PCA by Manifold Optimization

    Full text link
    Robust PCA is a widely used statistical procedure to recover a underlying low-rank matrix with grossly corrupted observations. This work considers the problem of robust PCA as a nonconvex optimization problem on the manifold of low-rank matrices, and proposes two algorithms (for two versions of retractions) based on manifold optimization. It is shown that, with a proper designed initialization, the proposed algorithms are guaranteed to converge to the underlying low-rank matrix linearly. Compared with a previous work based on the Burer-Monterio decomposition of low-rank matrices, the proposed algorithms reduce the dependence on the conditional number of the underlying low-rank matrix theoretically. Simulations and real data examples confirm the competitive performance of our method
    • …
    corecore