3,163 research outputs found

    Cutset Sampling for Bayesian Networks

    Full text link
    The paper presents a new sampling methodology for Bayesian networks that samples only a subset of variables and applies exact inference to the rest. Cutset sampling is a network structure-exploiting application of the Rao-Blackwellisation principle to sampling in Bayesian networks. It improves convergence by exploiting memory-based inference algorithms. It can also be viewed as an anytime approximation of the exact cutset-conditioning algorithm developed by Pearl. Cutset sampling can be implemented efficiently when the sampled variables constitute a loop-cutset of the Bayesian network and, more generally, when the induced width of the networks graph conditioned on the observed sampled variables is bounded by a constant w. We demonstrate empirically the benefit of this scheme on a range of benchmarks

    Cell-Probe Bounds for Online Edit Distance and Other Pattern Matching Problems

    Full text link
    We give cell-probe bounds for the computation of edit distance, Hamming distance, convolution and longest common subsequence in a stream. In this model, a fixed string of nn symbols is given and one δ\delta-bit symbol arrives at a time in a stream. After each symbol arrives, the distance between the fixed string and a suffix of most recent symbols of the stream is reported. The cell-probe model is perhaps the strongest model of computation for showing data structure lower bounds, subsuming in particular the popular word-RAM model. * We first give an Ω((δlogn)/(w+loglogn))\Omega((\delta \log n)/(w+\log\log n)) lower bound for the time to give each output for both online Hamming distance and convolution, where ww is the word size. This bound relies on a new encoding scheme and for the first time holds even when ww is as small as a single bit. * We then consider the online edit distance and longest common subsequence problems in the bit-probe model (w=1w=1) with a constant sized input alphabet. We give a lower bound of Ω(logn/(loglogn)3/2)\Omega(\sqrt{\log n}/(\log\log n)^{3/2}) which applies for both problems. This second set of results relies both on our new encoding scheme as well as a carefully constructed hard distribution. * Finally, for the online edit distance problem we show that there is an O((logn)2/w)O((\log n)^2/w) upper bound in the cell-probe model. This bound gives a contrast to our new lower bound and also establishes an exponential gap between the known cell-probe and RAM model complexities.Comment: 32 pages, 4 figure
    corecore