7 research outputs found

    Fast, adaptive, high order accurate discretization of the Lippmann-Schwinger equation in two dimension

    Get PDF
    We present a fast direct solver for two dimensional scattering problems, where an incident wave impinges on a penetrable medium with compact support. We represent the scattered field using a volume potential whose kernel is the outgoing Green's function for the exterior domain. Inserting this representation into the governing partial differential equation, we obtain an integral equation of the Lippmann-Schwinger type. The principal contribution here is the development of an automatically adaptive, high-order accurate discretization based on a quad tree data structure which provides rapid access to arbitrary elements of the discretized system matrix. This permits the straightforward application of state-of-the-art algorithms for constructing compressed versions of the solution operator. These solvers typically require O(N3/2)O(N^{3/2}) work, where NN denotes the number of degrees of freedom. We demonstrate the performance of the method for a variety of problems in both the low and high frequency regimes.Comment: 18 page

    Improved convergence of fast integral equation solvers for acoustic scattering by inhomogeneous penetrable media with discontinuous material interface

    Get PDF
    In recent years, several fast solvers for the solution of the Lippmann-Schwinger integral equation that mathematically models the scattering of time-harmonic acoustic waves by penetrable inhomogeneous obstacles, have been proposed. While many of these fast methodologies exhibit rapid convergence for smoothly varying scattering configurations, the rate for most of them reduce to either linear or quadratic when material properties are allowed to jump across the interface. A notable exception to this is a recently introduced Nystr\"{o}m scheme [J. Comput. Phys., 311 (2016), 258--274] that utilizes a specialized quadrature in the boundary region for a high-order treatment of the material interface. In this text, we present a solution framework that relies on the specialized boundary integrator to enhance the convergence rate of other fast, low order methodologies without adding to their computational complexity of O(Nlog⁥N)O(N \log N) for an NN-point discretization. In particular, to demonstrate the efficacy of the proposed framework, we explain its implementation to enhance the order to convergence of two schemes, one introduced by Duan and Rokhlin [J. Comput. Phys., 228(6) (2009), 2152--2174] that is based on a pre-corrected trapezoidal rule while the other by Bruno and Hyde [J. Comput. Phys., 200(2) (2004), 670--694] which relies on a suitable decomposition of the Green's function via Addition theorem. In addition to a detailed description of these methodologies, we also present a comparative performance study of the improved versions of these two and the Nystr\"{o}m solver in [J. Comput. Phys., 311 (2016), 258--274] through a wide range of numerical experiments

    Improved convergence of fast integral equation solvers for acoustic scattering by inhomogeneous penetrable media with discontinuous material interface

    Get PDF
    In recent years, several fast solvers for the solution of the Lippmann–Schwinger integral equation that mathematically models the scattering of time-harmonic acoustic waves by penetrable inhomogeneous obstacles, have been proposed. While many of these fast methodologies exhibit rapid convergence for smoothly varying scattering configurations, the rate for most of them reduce to either linear or quadratic when material properties are allowed to jump across the interface. A notable exception to this is a recently introduced Nyström scheme (Anand et al., 2016 [22]) that utilizes a specialized quadrature in the boundary region for a high-order treatment of the material interface. In this text, we present a solution framework that relies on the specialized boundary integrator to enhance the convergence rate of other fast, low order methodologies without adding to their computational complexity of O(N log N) for an N-point discretization. In particular, to demonstrate the efficacy of the proposed framework, we explain its implementation to enhance the order to convergence of two schemes, one introduced by Duan and Rokhlin (2009) [13] that is based on a pre-corrected trapezoidal rule while the other by Bruno and Hyde (2004) [12] which relies on a suitable decomposition of the Green's function via Addition theorem. In addition to a detailed description of these methodologies, we also present a comparative performance study of the improved versions of these two and the Nyström solver in Anand et al. (2016) [22] through a wide range of numerical experiments
    corecore