17,244 research outputs found
Non-bisphosphonate inhibitors of isoprenoid biosynthesis identified via computer-aided drug design.
The relaxed complex scheme, a virtual-screening methodology that accounts for protein receptor flexibility, was used to identify a low-micromolar, non-bisphosphonate inhibitor of farnesyl diphosphate synthase. Serendipitously, we also found that several predicted farnesyl diphosphate synthase inhibitors were low-micromolar inhibitors of undecaprenyl diphosphate synthase. These results are of interest because farnesyl diphosphate synthase inhibitors are being pursued as both anti-infective and anticancer agents, and undecaprenyl diphosphate synthase inhibitors are antibacterial drug leads
Recommended from our members
Isoprenoids determine Th1/Th2 fate in pathogenic T cells, providing a mechanism of modulation of autoimmunity by atorvastatin.
3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase is a critical enzyme in the mevalonate pathway that regulates the biosynthesis of cholesterol as well as isoprenoids that mediate the membrane association of certain GTPases. Blockade of this enzyme by atorvastatin (AT) inhibits the destructive proinflammatory T helper cell (Th)1 response during experimental autoimmune encephalomyelitis and may be beneficial in the treatment of multiple sclerosis and other Th1-mediated autoimmune diseases. Here we present evidence linking specific isoprenoid intermediates of the mevalonate pathway to signaling pathways that regulate T cell autoimmunity. We demonstrate that the isoprenoid geranylgeranyl-pyrophosphate (GGPP) mediates proliferation, whereas both GGPP and its precursor, farnesyl-PP, regulate the Th1 differentiation of myelin-reactive T cells. Depletion of these isoprenoid intermediates in vivo via oral AT administration hindered these T cell responses by decreasing geranylgeranylated RhoA and farnesylated Ras at the plasma membrane. This was associated with reduced extracellular signal-regulated kinase (ERK) and p38 phosphorylation and DNA binding of their cotarget c-fos in response to T cell receptor activation. Inhibition of ERK and p38 mimicked the effects of AT and induced a Th2 cytokine shift. Thus, by connecting isoprenoid availability to regulation of Th1/Th2 fate, we have elucidated a mechanism by which AT may suppress Th1-mediated central nervous system autoimmune disease
Recommended from our members
Production of ent-kaurene from lignocellulosic hydrolysate in Rhodosporidium toruloides.
BACKGROUND:Rhodosporidium toruloides has emerged as a promising host for the production of bioproducts from lignocellulose, in part due to its ability to grow on lignocellulosic feedstocks, tolerate growth inhibitors, and co-utilize sugars and lignin-derived monomers. Ent-kaurene derivatives have a diverse range of potential applications from therapeutics to novel resin-based materials. RESULTS:The Design, Build, Test, and Learn (DBTL) approach was employed to engineer production of the non-native diterpene ent-kaurene in R. toruloides. Following expression of kaurene synthase (KS) in R. toruloides in the first DBTL cycle, a key limitation appeared to be the availability of the diterpene precursor, geranylgeranyl diphosphate (GGPP). Further DBTL cycles were carried out to select an optimal GGPP synthase and to balance its expression with KS, requiring two of the strongest promoters in R. toruloides, ANT (adenine nucleotide translocase) and TEF1 (translational elongation factor 1) to drive expression of the KS from Gibberella fujikuroi and a mutant version of an FPP synthase from Gallus gallus that produces GGPP. Scale-up of cultivation in a 2 L bioreactor using a corn stover hydrolysate resulted in an ent-kaurene titer of 1.4 g/L. CONCLUSION:This study builds upon previous work demonstrating the potential of R. toruloides as a robust and versatile host for the production of both mono- and sesquiterpenes, and is the first demonstration of the production of a non-native diterpene in this organism
Significance of KRAS/PAK1/Crk pathway in non-small cell lung cancer oncogenesis.
BackgroundKey effector(s) of mutated KRAS in lung cancer progression and metastasis are unknown. Here we investigated the role of PAK1/Crk axis in transduction of the oncogenic KRAS signal in non-small cell lung cancer (NSCLC).MethodsWe used NSCLC clinical specimens to examine the correlation among KRAS mutations (codon 12, 13 and 61); PAK1/Crk axis activation [p-PAK1(Thr423), p-Crk(Ser41)]; and adhesion molecules expression by immunohistochemistry. For assessing the role of proto-oncogene c-Crk as a KRAS effector, we inhibited KRAS in NSCLC cells by a combination of farnesyltransferase inhibitor (FTI) and geranylgeranyltransferase inhibitor (GGTI) and measured p-Crk-II(Ser41) by western blotting. Finally, we disrupted the signaling network downstream of KRAS by blocking KRAS/PAK1/Crk axis with PAK1 inhibitors (i.e., IPA-3, FRAX597 or FRAX1036) along with partial inhibition of all other KRAS effectors by prenylation inhibitors (FTI + GGTI) and examined the motility, morphology and proliferation of the NSCLC cells.ResultsImmunohistochemical analysis demonstrated an inverse correlation between PAK1/Crk phosphorylation and E-cadherin/p120-catenin expression. Furthermore, KRAS mutant tumors expressed higher p-PAK1(Thr423) compared to KRAS wild type. KRAS prenylation inhibition by (FTI + GGTI) completely dephosphorylated proto-oncogene c-Crk on Serine 41 while Crk phosphorylation did not change by individual prenylation inhibitors or diluent. Combination of PAK1 inhibition and partial inhibition of all other KRAS effectors by (FTI + GGTI) dramatically altered morphology, motility and proliferation of H157 and A549 cells.ConclusionsOur data provide evidence that proto-oncogene c-Crk is operative downstream of KRAS in NSCLC. Previously we demonstrated that Crk receives oncogenic signals from PAK1. These data in conjunction with the work of others that have specified the role of PAK1 in transduction of KRAS signal bring forward the importance of KRAS/PAK1/Crk axis as a prominent pathway in the oncogenesis of KRAS mutant lung cancer
Systems biology strategy for drug potentiating through drug repurposing:bisphosphonates beyond osteoporosis treatment
Carbocations and the Complex Flavor and Bouquet of Wine: Mechanistic Aspects of Terpene Biosynthesis in Wine Grapes.
Computational chemistry approaches for studying the formation of terpenes/terpenoids in wines are presented, using five particular terpenes/terpenoids (1,8-cineole, α-ylangene, botrydial, rotundone, and the wine lactone), volatile compounds (or their precursors) found in wine and/or wine grapes, as representative examples. Through these examples, we show how modern computational quantum chemistry can be employed as an effective tool for assessing the validity of proposed mechanisms for terpene/terpenoid formation
- …
