648 research outputs found

    Core-mantle boundary deformations and J2 variations resulting from the 2004 Sumatra earthquake

    Full text link
    The deformation at the core-mantle boundary produced by the 2004 Sumatra earthquake is investigated by means of a semi-analytic theoretical model of global coseismic and postseismic deformation, predicting a millimetric coseismic perturbation over a large portion of the core-mantle boundary. Spectral features of such deformations are analysed and discussed. The time-dependent postseismic evolution of the elliptical part of the gravity field (J2) is also computed for different asthenosphere viscosity models. Our results show that, for asthenospheric viscosities smaller than 10^18 Pa s, the postseismic J2 variation in the next years is expected to leave a detectable signal in geodetic observations.Comment: 14 pages, 8 figures, 1 table. It will appear in Geophysical Journal Internationa

    Source parameters of the great Sumatran megathrust earthquakes of 1797 and 1833 inferred from coral microatolls

    Get PDF
    Large uplifts and tilts occurred on the Sumatran outer arc islands between 0.5° and 3.3°S during great historical earthquakes in 1797 and 1833, as judged from relative sea level changes recorded by annually banded coral heads. Coral data for these two earthquakes are most complete along a 160-km length of the Mentawai islands between 3.2° and 2°S. Uplift there was as great as 0.8 m in 1797 and 2.8 m in 1833. Uplift in 1797 extended 370 km, between 3.2° and 0.5°S. The pattern and magnitude of uplift imply megathrust ruptures corresponding to moment magnitudes (M_w) in the range 8.5 to 8.7. The region of uplift in 1833 ranges from 2° to at least 3.2°S and, judging from historical reports of shaking and tsunamis, perhaps as far as 5°S. The patterns and magnitude of uplift and tilt in 1833 are similar to those experienced farther north, between 0.5° and 3°N, during the giant Nias-Simeulue megathrust earthquake of 2005; the outer arc islands rose as much as 3 m and tilted toward the mainland. Elastic dislocation forward modeling of the coral data yields megathrust ruptures with moment magnitudes ranging from 8.6 to 8.9. Sparse accounts at Padang, along the mainland west coast at latitude 1°S, imply tsunami runups of at least 5 m in 1797 and 3–4 m in 1833. Tsunamis simulated from the pattern of coral uplift are roughly consistent with these reports. The tsunami modeling further indicates that the Indian Ocean tsunamis of both 1797 and 1833, unlike that of 2004, were directed mainly south of the Indian subcontinent. Between about 0.7° and 2.1°S, the lack of vintage 1797 and 1833 coral heads in the intertidal zone demonstrates that interseismic submergence has now nearly equals coseismic emergence that accompanied those earthquakes. The interseismic strains accumulated along this reach of the megathrust have thus approached or exceeded the levels relieved in 1797 and 1833

    Interseismic deformation above the Sunda Megathrust recorded in coral microatolls of the Mentawai islands, West Sumatra

    Get PDF
    The geomorphology and internal stratigraphy of modern coral microatolls show that all the outer arc Mentawai islands of West Sumatra have been subsiding over the past several decades. These same islands rose as much as 3 m during the giant megathrust earthquakes of 1797 and 1833, and the current subsidence probably reflects strain accumulation that will lead to future large earthquakes. Average subsidence rates over the past half century vary from 2 to 14 mm yr^(−1) and increase southwestward, toward the subduction trench. The pattern is consistent with rates of subsidence measured by a sparse network of continuously recording Global Positioning System (cGPS) stations and with locking of a 400-km-long section of the underlying subduction megathrust, between about 1°S and 4°S. This record of subsidence and tilting, extending nearly a century into the past, implies that the region is advancing toward the occurrence of another giant earthquake. However, evidence of episodic rather than steady subsidence reflects a behavior that is more complex than simple elastic strain accumulation and relief. Most prominent of these episodes is an extensive emergence/subsidence couplet in about 1962, which may be the result of rapid, aseismic slip on the megathrust, between the islands and the trench. Lower subsidence rates recorded by the corals since about 1985 may reflect failure on many small patches within the locked section of the megathrust

    Heterogeneous coupling of the Sumatran megathrust constrained by geodetic and paleogeodetic measurements

    Get PDF
    Geodetic and paleogeodetic measurements of interseismic strain above the Sumatran portion of the Sunda subduction zone reveal a heterogeneous pattern of coupling. Annual banding in corals provides vertical rates of deformation spanning the last half of the 20th century, and repeated GPS surveys between 1991 and 2001 and continuous measurements at GPS stations operated since 2002 provide horizontal velocities. Near the equator, the megathrust is locked over a narrow width of only a few tens of kilometers. In contrast, the locked fault zone is up to about 175 km wide in areas where great interplate earthquakes have occurred in the past. Formal inversion of the data reveals that these strongly coupled patches are roughly coincident with asperities that ruptured during these events. The correlation is most spectacular for rupture of the M_w 8.7 Nias-Simeulue earthquake of 2005, which released half of the moment deficit that had accumulated since its previous rupture in 1861, suggesting that this earthquake was overdue. Beneath the Mentawai islands, strong coupling is observed within the overlapping rupture areas of the great earthquakes of 1797 and 1833. The accumulated slip deficit since these events is slowly reaching the amount of slip that occurred during the 1833 earthquake but already exceeds the slip that occurred during the 1797 earthquake. Thus, rerupture of part of the Mentawai patch in September 2007 was not a surprise. In contrast, coupling is low below the Batu islands near the equator and around Enggano island at about 5°S, where only moderate earthquakes (M_w < 8.0) have occurred in the past two centuries. The correlation of large seismic asperities with patches that are locked during the interseismic period suggests that they are persistent features. This interpretation is reinforced by the fact that the large locked patches and great ruptures occur beneath persistent geomorphologic features, the largest outer arc islands. Depth- and convergence-rate-dependent temperature might influence the pattern of coupling, through its effect on the rheology of the plate interface, but other influences are required to account for the observed along-strike heterogeneity of coupling. In particular, subduction of the Investigator Fracture Zone could be the cause for the low coupling near the equator

    Impact of global seismicity on sea level change assessment

    Full text link
    We analyze the effect of seismic activity on sealevel variations, by computing the time-dependent vertical crustal movement and geoid change due to coseismic deformations and postseismic relaxation effects. Seismic activity can affect both the absolute sealevel, by changing the Earth gravity field and hence the geoid height, and the relative sealevel, i.e. the radial distance between seafloor and geoid level. By using comprehensive seismic catalogues we assess the net effect of seismicity on tidal relative sealevel measurements as well as on the global oceanic surfaces, and we obtain an estimate of absolute sealevel variations of seismic origin. Our results confirm that, on a global scale, most of the signal is associated with few giant thrust events, and that RSL estimates obtained using tide-gauge data can be sensibly affected by the seismic driven sealevel signal. The recent measures of sealevel obtained by satellite altimetry show a wide regional variation of sealevel trends over the oceanic surfaces, with the largest deviations from the mean trend occurring in tectonically active regions. While our estimates of average absolute sealevel variations turn out to be orders of magnitude smaller than the satellite measured variations, we can still argue that mass redistribution associated with aseismic tectonic processes may contribute to the observed regional variability of sealevel variations.Comment: 34 pages, submitted to Journal of Geophysical Researc

    Upper mantle rheology from GRACE and GPS postseismic deformation after the 2004 Sumatra‐Andaman earthquake

    Get PDF
    International audience[1] Mantle rheology is one of the essential, yet least understood, material properties of our planet, controlling the dynamic processes inside the Earth's mantle and the Earth's response to various forces. With the advent of GRACE satellite gravity, measurements of mass displacements associated with many processes are now available. In the case of mass displacements related to postseismic deformation, these data may provide new constraints on the mantle rheology. We consider the postseismic deformation due to the M w = 9.2 Sumatra 26 December 2004 and M w = 8.7 Nias 28 March 2005 earthquakes. Applying wavelet analyses to enhance those local signals in the GRACE time varying geoids up to September 2007, we detect a clear postseismic gravity signal. We supplement these gravity variations with GPS measurements of postseismic crustal displacements to constrain postseismic relaxation processes throughout the upper mantle. The observed GPS displacements and gravity variations are well explained by a model of visco-elastic relaxation plus a small amount of afterslip at the downdip extension of the coseismically ruptured fault planes. Our model uses a 60 km thick elastic layer above a viscoelastic asthenosphere with Burgers body rheology. The mantle below depth 220 km has a Maxwell rheology. Assuming a low transient viscosity in the 60–220 km depth range, the GRACE data are best explained by a constant steady state viscosity throughout the ductile portion of the upper mantle (e.g., 60–660 km). This suggests that the localization of relatively low viscosity in the asthenosphere is chiefly in the transient viscosity rather than the steady state viscosity. We find a 8.10 18 Pa s mantle viscosity in the 220–660 km depth range. This may indicate a transient response of the upper mantle to the high amount of stress released by the earthquakes. To fit the remaining misfit to the GRACE data, larger at the smaller spatial scales, cumulative afterslip of about 75 cm at depth should be added over the period spanned by the GRACE models. It produces only small crustal displacements. Our results confirm that satellite gravity data are an essential complement to ground geodetic and geophysical networks in order to understand the seismic cycle and the Earth's inner structure

    Coseismic Slip and Afterslip of the Great M_w 9.15 Sumatra–Andaman Earthquake of 2004

    Get PDF
    We determine coseismic and the first-month postseismic deformation associated with the Sumatra–Andaman earthquake of 26 December 2004 from near- field Global Positioning System (GPS) surveys in northwestern Sumatra and along the Nicobar-Andaman islands, continuous and campaign GPS measurements from Thailand and Malaysia, and in situ and remotely sensed observations of the vertical motion of coral reefs. The coseismic model shows that the Sunda subduction megathrust ruptured over a distance of about 1500 km and a width of less than 150 km, releasing a total moment of 6.7–7.0 x 10^(22) N m, equivalent to a magnitude M_w 9.15. The latitudinal distribution of released moment in our model has three distinct peaks at about 4° N, 7° N, and 9° N, which compares well to the latitudinal variations seen in the seismic inversion and of the analysis of radiated T waves. Our coseismic model is also consistent with interpretation of normal modes and with the amplitude of very-long-period surface waves. The tsunami predicted from this model fits relatively well the altimetric measurements made by the JASON and TOPEX satellites. Neither slow nor delayed slip is needed to explain the normal modes and the tsunami wave. The near-field geodetic data that encompass both coseismic deformation and up to 40 days of postseismic deformation require that slip must have continued on the plate interface after the 500-sec-long seismic rupture. The postseismic geodetic moment of about 2.4 x 10^(22) N m (M_w 8.8) is equal to about 30 ± 5% of the coseismic moment release. Evolution of postseismic deformation is consistent with rate-strengthening frictional afterslip

    Coseismic and post-seismic signatures of the Sumatra 2004 December and 2005 March earthquakes in GRACE satellite gravity

    Get PDF
    International audienceS U M M A R Y The GRACE satellite mission has been measuring the Earth's gravity field and its temporal variations since 2002 April. Although these variations are mainly due to mass transfer within the geofluid envelops, they also result from mass displacements associated with phenomena including glacial isostatic adjustment and earthquakes. However, these last contributions are difficult to isolate because of the presence of noise and of geofluid signals, and because of GRACE's coarse spatial resolution (>400 km half-wavelength). In this paper, we show that a wavelet analysis on the sphere helps to retrieve earthquake signatures from GRACE geoid products. Using a wavelet analysis of GRACE geoids products, we show that the geoid variations caused by the 2004 December (M w = 9.2) and 2005 March (M w = 8.7) Sumatra earthquakes can be detected. At GRACE resolution, the 2004 December earthquake produced a strong coseismic decrease of the gravity field in the Andaman Sea, followed by relaxation in the area affected by both the Andaman 2004 and the Nias 2005 earthquakes. We find two characteristic timescales for the relaxation, with a fast variation occurring in the vicinity of the Central Andaman ridge. We discuss our coseismic observations in terms of density changes of crustal and upper-mantle rocks, and of the vertical displacements in the Andaman Sea. We interpret the post-seismic signal in terms of the viscoelastic response of the Earth's mantle. The transient component of the relaxation may indicate the presence of hot, viscous material beneath the active Central Andaman Basin

    Tsunami generation by ocean floor rupture front propagation: Hamiltonian description

    Get PDF
    The Hamiltonian method is applied to the problem of tsunami generation caused by a propagating rupture front and deformation of the ocean floor. The method establishes an alternative framework for analyzing the tsunami generation process and produces analytical expressions for the power and directivity of tsunami radiation (in the far-field) for two illustrative cases, with constant and gradually varying speeds of rupture front propagation
    corecore