2 research outputs found

    An Interleaved Soft Switched High Step-Up Boost Converter With High Power Density for Renewable Energy Applications

    Get PDF
    In this article, a novel soft switched interleaved boost structure with a simple auxiliary circuit is proposed which is suitable for stand-alone loads or ac grid applications. In this topology, coupled inductors and switched capacitor cells of parallel modules are merged to obtain high voltage conversion ratio. The converter also has the capability of adding extra switched capacitor cells to attain very high voltage gain. To provide soft-switching condition in the wide range of output power, a new zero-voltage transition auxiliary circuit is employed which is responsible for soft switching of both phases and benefits from low conduction losses, the minimum number of semiconductor elements, and only one auxiliary gate-driver. These merits provide very high efficiency at both full-load and light loads. More importantly, no auxiliary magnetic components are utilized by taking advantage of the leakage inductance of coupled inductors for the resonant network. All semiconductor components operate under soft switching alleviating the reverse recovery problem and switching losses. Besides, the converter benefits from common ground between input and output which simplify voltage feedback. The experimental results of the interleaved converter prototype with 400-V output voltage at 400 W and 100 kHz switching frequency are provided. The full load efficiency of 98% was achieved and the power density was observed 1.9 W/Cm3

    Robust Control of a Multi-phase Interleaved Boost Converter for Photovoltaic Application using µ-Synthesis Approach

    Get PDF
    The high demand of energy efficiency has led to the development power converter topologies and control system designs within the field of power electronics. Recent advances of interleaved boost converters have showed improved features between the power conversion topologies in several aspects, including power quality, efficiency, sustainability and reliability. Interleaved boost converter with multi-phase technique for PV system is an attractive area for distributed power generation. During load variation or power supply changes due to the weather changes the output voltage requires a robust control to maintain stable and perform robustness. Connecting converters in series and parallel have the advantages of modularity, scalability, reliability, distributed location of capacitors which make it favorable in industrial applications. In this dissertation, a design of µ-synthesis controller is proposed to address the design specification of multi-phase interleaved boost converter at several power applications. This thesis contributes to the ongoing research on the IBC topology by proposing the modeling, applications uses and control techniques to the stability challenges. The research proposes a new strategy of robust control applied to a non-isolated DC/DC interleaved boost converter with a high step voltage ratio as multi-phase, multi-stage which is favorable for PV applications. The proposed controller is designed based on µ-synthesis technique to approach a high regulated output voltage, better efficiency, gain a fast regulation response against disturbance and load variation with a better dynamic performance and achieve robustness. The controller has been simulated using MATLAB/Simulink software and validated through experimental results which show the effectiveness and the robustness
    corecore