3,629,865 research outputs found

    Jamming in complex networks with degree correlation

    Full text link
    We study the effects of the degree-degree correlations on the pressure congestion J when we apply a dynamical process on scale free complex networks using the gradient network approach. We find that the pressure congestion for disassortative (assortative) networks is lower (bigger) than the one for uncorrelated networks which allow us to affirm that disassortative networks enhance transport through them. This result agree with the fact that many real world transportation networks naturally evolve to this kind of correlation. We explain our results showing that for the disassortative case the clusters in the gradient network turn out to be as much elongated as possible, reducing the pressure congestion J and observing the opposite behavior for the assortative case. Finally we apply our model to real world networks, and the results agree with our theoretical model

    Scaling in Small-World Resistor Networks

    Full text link
    We study the effective resistance of small-world resistor networks. Utilizing recent analytic results for the propagator of the Edwards-Wilkinson process on small-world networks, we obtain the asymptotic behavior of the disorder-averaged two-point resistance in the large system-size limit. We find that the small-world structure suppresses large network resistances: both the average resistance and its standard deviation approaches a finite value in the large system-size limit for any non-zero density of random links. We also consider a scenario where the link conductance decays as a power of the length of the random links, l−αl^{-\alpha}. In this case we find that the average effective system resistance diverges for any non-zero value of α\alpha.Comment: 15 pages, 6 figure

    Simulation of 1+1 dimensional surface growth and lattices gases using GPUs

    Get PDF
    Restricted solid on solid surface growth models can be mapped onto binary lattice gases. We show that efficient simulation algorithms can be realized on GPUs either by CUDA or by OpenCL programming. We consider a deposition/evaporation model following Kardar-Parisi-Zhang growth in 1+1 dimensions related to the Asymmetric Simple Exclusion Process and show that for sizes, that fit into the shared memory of GPUs one can achieve the maximum parallelization speedup ~ x100 for a Quadro FX 5800 graphics card with respect to a single CPU of 2.67 GHz). This permits us to study the effect of quenched columnar disorder, requiring extremely long simulation times. We compare the CUDA realization with an OpenCL implementation designed for processor clusters via MPI. A two-lane traffic model with randomized turning points is also realized and the dynamical behavior has been investigated.Comment: 20 pages 12 figures, 1 table, to appear in Comp. Phys. Com

    Scaling of Heteroepitaxial Island Sizes

    Full text link
    Monte Carlo simulations of an atomistic solid-on-solid model are used to study the effect of lattice misfit on the distribution of two-dimensional islands sizes as a function of coverage Θ\Theta in the submonolayer aggregation regime of epitaxial growth. Misfit promotes the detachment of atoms from the perimeter of large pseudomorphic islands and thus favors their dissolution into smaller islands that relieve strain more efficiently. The number density of islands composed of ss atoms exhibits scaling in the form \mbox{Ns(Θ)∼Θ/⟨s⟩2 g(s/⟨s⟩N_s(\Theta) \sim \Theta / \langle s \rangle^2 \, g(s/\langle s \rangle)} where ⟨s⟩\langle s \rangle is the average island size. Unlike the case of homoepitaxy, a rate equation theory based on this observation leads to qualitatively different behavior than observed in the simulations.Comment: 10 pages, LaTeX 2.09, IC-DDV-94-00
    • …
    corecore