13,762 research outputs found

    Spotting Trees with Few Leaves

    Full text link
    We show two results related to the Hamiltonicity and kk-Path algorithms in undirected graphs by Bj\"orklund [FOCS'10], and Bj\"orklund et al., [arXiv'10]. First, we demonstrate that the technique used can be generalized to finding some kk-vertex tree with ll leaves in an nn-vertex undirected graph in O(1.657k2l/2)O^*(1.657^k2^{l/2}) time. It can be applied as a subroutine to solve the kk-Internal Spanning Tree (kk-IST) problem in O(min(3.455k,1.946n))O^*(\min(3.455^k, 1.946^n)) time using polynomial space, improving upon previous algorithms for this problem. In particular, for the first time we break the natural barrier of O(2n)O^*(2^n). Second, we show that the iterated random bipartition employed by the algorithm can be improved whenever the host graph admits a vertex coloring with few colors; it can be an ordinary proper vertex coloring, a fractional vertex coloring, or a vector coloring. In effect, we show improved bounds for kk-Path and Hamiltonicity in any graph of maximum degree Δ=4,,12\Delta=4,\ldots,12 or with vector chromatic number at most 8

    Topological lower bounds for the chromatic number: A hierarchy

    Full text link
    This paper is a study of ``topological'' lower bounds for the chromatic number of a graph. Such a lower bound was first introduced by Lov\'asz in 1978, in his famous proof of the \emph{Kneser conjecture} via Algebraic Topology. This conjecture stated that the \emph{Kneser graph} \KG_{m,n}, the graph with all kk-element subsets of {1,2,...,n}\{1,2,...,n\} as vertices and all pairs of disjoint sets as edges, has chromatic number n2k+2n-2k+2. Several other proofs have since been published (by B\'ar\'any, Schrijver, Dolnikov, Sarkaria, Kriz, Greene, and others), all of them based on some version of the Borsuk--Ulam theorem, but otherwise quite different. Each can be extended to yield some lower bound on the chromatic number of an arbitrary graph. (Indeed, we observe that \emph{every} finite graph may be represented as a generalized Kneser graph, to which the above bounds apply.) We show that these bounds are almost linearly ordered by strength, the strongest one being essentially Lov\'asz' original bound in terms of a neighborhood complex. We also present and compare various definitions of a \emph{box complex} of a graph (developing ideas of Alon, Frankl, and Lov\'asz and of \kriz). A suitable box complex is equivalent to Lov\'asz' complex, but the construction is simpler and functorial, mapping graphs with homomorphisms to Z2\Z_2-spaces with Z2\Z_2-maps.Comment: 16 pages, 1 figure. Jahresbericht der DMV, to appea
    corecore