28,403 research outputs found

    Representations of nets of C*-algebras over S^1

    Full text link
    In recent times a new kind of representations has been used to describe superselection sectors of the observable net over a curved spacetime, taking into account of the effects of the fundamental group of the spacetime. Using this notion of representation, we prove that any net of C*-algebras over S^1 admits faithful representations, and when the net is covariant under Diff(S^1), it admits representations covariant under any amenable subgroup of Diff(S^1)

    Laminations and groups of homeomorphisms of the circle

    Full text link
    If M is an atoroidal 3-manifold with a taut foliation, Thurston showed that pi_1(M) acts on a circle. Here, we show that some other classes of essential laminations also give rise to actions on circles. In particular, we show this for tight essential laminations with solid torus guts. We also show that pseudo-Anosov flows induce actions on circles. In all cases, these actions can be made into faithful ones, so pi_1(M) is isomorphic to a subgroup of Homeo(S^1). In addition, we show that the fundamental group of the Weeks manifold has no faithful action on S^1. As a corollary, the Weeks manifold does not admit a tight essential lamination, a pseudo-Anosov flow, or a taut foliation. Finally, we give a proof of Thurston's universal circle theorem for taut foliations based on a new, purely topological, proof of the Leaf Pocket Theorem.Comment: 50 pages, 12 figures. Ver 2: minor improvement

    The Computable Universe Hypothesis

    Full text link
    When can a model of a physical system be regarded as computable? We provide the definition of a computable physical model to answer this question. The connection between our definition and Kreisel's notion of a mechanistic theory is discussed, and several examples of computable physical models are given, including models which feature discrete motion, a model which features non-discrete continuous motion, and probabilistic models such as radioactive decay. We show how computable physical models on effective topological spaces can be formulated using the theory of type-two effectivity (TTE). Various common operations on computable physical models are described, such as the operation of coarse-graining and the formation of statistical ensembles. The definition of a computable physical model also allows for a precise formalization of the computable universe hypothesis--the claim that all the laws of physics are computable.Comment: 33 pages, 0 figures; minor change
    • …
    corecore