622 research outputs found

    Advanced and Innovative Optimization Techniques in Controllers: A Comprehensive Review

    Get PDF
    New commercial power electronic controllers come to the market almost every day to help improve electronic circuit and system performance and efficiency. In DC–DC switching-mode converters, a simple and elegant hysteretic controller is used to regulate the basic buck, boost and buck–boost converters under slightly different configurations. In AC–DC converters, the input current shaping for power factor correction posts a constraint. But, several brilliant commercial controllers are demonstrated for boost and fly back converters to achieve almost perfect power factor correction. In this paper a comprehensive review of the various advanced optimization techniques used in power electronic controllers is presented

    ActMesh- A Cognitive Resource Management paradigm for dynamic mobile Internet Access with Reliability Guarantees

    Get PDF
    Wireless Mesh Networks (WMNs) are going increasing attention as a flexible low-cost networking architecture to provide media Internet access over metropolitan areas to mobile clients requiring multimedia services. In WMNs, Mesh Routers (MRs) from the mesh backbone and accomplish the twofold task of traffic forwarding, as well as providing multimedia access to mobile Mesh Clients (MCs). Due to the intensive bandwidth-resource requested for supporting QoS-demanding multimedia services, performance of the current WMNs is mainly limited by spectrum-crowding and traffic-congestion, as only scarce spectrum-resources is currently licensed for the MCs' access. In principle, this problem could be mitigated by exploiting in a media-friendly (e.g., content-aware) way the context-aware capabilities offered by the Cognitive Radio (CR) paradigm. As integrated exploitation of both content and context-aware system's capabilities is at the basis of our proposed Active Mesh (ActMesh) networking paradigm. This last aims at defining a network-wide architecture for realizing media-friendly Cognitive Mesh nets (e.g., context aware Cognitive Mesh nets). Hence, main contribution of this work is four fold: 1. After introducing main functional blocks of our ActMesh architecture, suitable self-adaptive Belief Propagation and Soft Data Fusion algorithms are designed to provide context-awareness. This is done under both cooperative and noncooperative sensing frameworks. 2. The resulting network-wide resource management problem is modelled as a constrained stochastic Network Utility Maximization (NUM) problem, with the dual (contrasting) objective to maximize spectrum efficiency at the network level, while accounting for the perceived quality of the delivered media flows at the client level. 3. A fully distributed, scalable and self-adaptive implementation of the resulting Active Resource Manager (ARM) is deployed, that explicitly accounts for the energy limits of the battery powered MCs and the effects induced by both fading and client mobility. Due to informationally decentralized architecture of the ActMesh net, the complexity of (possibly, optimal) centralized solutions for resource management becomes prohibitive when number of MCs accessing ActMesh net grow. Furthermore, centralized resource management solutions could required large amounts of time to collect and process the required network information, which, in turn, induce delay that can be unacceptable for delay sensitive media applications, e.g., multimedia streaming. Hence, it is important to develop network-wide ARM policies that are both distributed and scalable by exploiting the radio MCs capabilities to sense, adapt and coordinate themselves. We validate our analytical models via simulation based numerical tests, that support actual effectiveness of the overall ActMesh paradigm, both in terms of objective and subjective performance metrics. In particular, the basic tradeoff among backbone traffic-vs-access traffic arising in the ActMesh net from the bandwidth-efficient opportunistic resource allocation policy pursued by the deployed ARM is numerically characterized. The standardization framework we inspire to is the emerging IEEE 802.16h one

    ActMesh- A Cognitive Resource Management paradigm for dynamic mobile Internet Access with Reliability Guarantees

    Get PDF
    Wireless Mesh Networks (WMNs) are going increasing attention as a flexible low-cost networking architecture to provide media Internet access over metropolitan areas to mobile clients requiring multimedia services. In WMNs, Mesh Routers (MRs) from the mesh backbone and accomplish the twofold task of traffic forwarding, as well as providing multimedia access to mobile Mesh Clients (MCs). Due to the intensive bandwidth-resource requested for supporting QoS-demanding multimedia services, performance of the current WMNs is mainly limited by spectrum-crowding and traffic-congestion, as only scarce spectrum-resources is currently licensed for the MCs' access. In principle, this problem could be mitigated by exploiting in a media-friendly (e.g., content-aware) way the context-aware capabilities offered by the Cognitive Radio (CR) paradigm. As integrated exploitation of both content and context-aware system's capabilities is at the basis of our proposed Active Mesh (ActMesh) networking paradigm. This last aims at defining a network-wide architecture for realizing media-friendly Cognitive Mesh nets (e.g., context aware Cognitive Mesh nets). Hence, main contribution of this work is four fold: 1. After introducing main functional blocks of our ActMesh architecture, suitable self-adaptive Belief Propagation and Soft Data Fusion algorithms are designed to provide context-awareness. This is done under both cooperative and noncooperative sensing frameworks. 2. The resulting network-wide resource management problem is modelled as a constrained stochastic Network Utility Maximization (NUM) problem, with the dual (contrasting) objective to maximize spectrum efficiency at the network level, while accounting for the perceived quality of the delivered media flows at the client level. 3. A fully distributed, scalable and self-adaptive implementation of the resulting Active Resource Manager (ARM) is deployed, that explicitly accounts for the energy limits of the battery powered MCs and the effects induced by both fading and client mobility. Due to informationally decentralized architecture of the ActMesh net, the complexity of (possibly, optimal) centralized solutions for resource management becomes prohibitive when number of MCs accessing ActMesh net grow. Furthermore, centralized resource management solutions could required large amounts of time to collect and process the required network information, which, in turn, induce delay that can be unacceptable for delay sensitive media applications, e.g., multimedia streaming. Hence, it is important to develop network-wide ARM policies that are both distributed and scalable by exploiting the radio MCs capabilities to sense, adapt and coordinate themselves. We validate our analytical models via simulation based numerical tests, that support actual effectiveness of the overall ActMesh paradigm, both in terms of objective and subjective performance metrics. In particular, the basic tradeoff among backbone traffic-vs-access traffic arising in the ActMesh net from the bandwidth-efficient opportunistic resource allocation policy pursued by the deployed ARM is numerically characterized. The standardization framework we inspire to is the emerging IEEE 802.16h one

    Fair and Scalable Orchestration of Network and Compute Resources for Virtual Edge Services

    Get PDF
    The combination of service virtualization and edge computing allows for low latency services, while keeping data storage and processing local. However, given the limited resources available at the edge, a conflict in resource usage arises when both virtualized user applications and network functions need to be supported. Further, the concurrent resource request by user applications and network functions is often entangled, since the data generated by the former has to be transferred by the latter, and vice versa. In this paper, we first show through experimental tests the correlation between a video-based application and a vRAN. Then, owing to the complex involved dynamics, we develop a scalable reinforcement learning framework for resource orchestration at the edge, which leverages a Pareto analysis for provable fair and efficient decisions. We validate our framework, named VERA, through a real-time proof-of-concept implementation, which we also use to obtain datasets reporting real-world operational conditions and performance. Using such experimental datasets, we demonstrate that VERA meets the KPI targets for over 96% of the observation period and performs similarly when executed in our real-time implementation, with KPI differences below 12.4%. Further, its scaling cost is 54% lower than a centralized framework based on deep-Q networks

    Power System Simulation, Control and Optimization

    Get PDF
    This Special Issue “Power System Simulation, Control and Optimization” offers valuable insights into the most recent research developments in these topics. The analysis, operation, and control of power systems are increasingly complex tasks that require advanced simulation models to analyze and control the effects of transformations concerning electricity grids today: Massive integration of renewable energies, progressive implementation of electric vehicles, development of intelligent networks, and progressive evolution of the applications of artificial intelligence

    Spectrum sharing and management techniques in mobile networks

    Get PDF
    Το φάσμα συχνοτήτων αποδεικνύεται σπάνιο κομμάτι για τους πόρους ενός κινητού δικτύου το οποίο πρέπει να ληφθεί υπόψιν στη σχεδίαση τηλεπικοινωνιακών συστημάτων 5ης γενιάς. Επιπλέον οι πάροχοι κινητών δικτύων θα πρέπει να επαναπροσδιορίσουν επιχειρησιακά μοντέλα τα οποία μέχρι τώρα δεν θεωρούνταν αναγκαία (π.χ., γνωσιακά ραδιοδίκτυα), ή να εξετάσουν την υιοθέτηση νέων μοντέλων που αναδεικνύονται (π.χ., αδειοδοτούμενη από κοινού πρόσβαση) ώστε να καλύψουν τις ολοένα αυξανόμενες ανάγκες για εύρος ζώνης. Ο μερισμός φάσματος θεωρείται αναπόφευκτος για συστήματα 5G και η διατριβή παρέχει λύση για προσαρμοστικό μερισμό φάσματος με πολλαπλά καθεστώτα εξουσιοδότησης, βάσει ενός καινοτόμου αρχιτεκτονικού πλαισίου το οποίο επιτρέπει στα δικτυακά στοιχεία να λαμβάνουν αποφάσεις για απόκτηση φάσματος. Η προτεινόμενη διαδικασία λήψης αποφάσεων είναι μία καινοτόμα τεχνική προσαρμοστικού μερισμού φάσματος βασιζόμενη σε ελεγκτές ασαφούς λογικής που καθορίζονν το καταλληλότερο σχήμα μερισμού φάσματος και σε ενισχυμένη μάθηση που ρυθμίζει τους κανόνες ασαφούς λογικής, στοχεύοντας να βρει τη βέλτιστη πολιτική που πρέπει να ακολουθεί ο πάροχος ώστε να προσφέρει την επιθυμητή ποιότητα υπηρεσιών στους χρήστες, διατηρώντας πόρους (οικονομικούς ή ραδιοπόρους) όπου είναι εφικτό. Η τελευταία συνεισφορά της διατριβής είναι ένας μηχανισμός που εξασφαλίζει δίκαιη πρόσβαση σε φάσμα ανάμεσα σε χρήστες σε σενάρια στα οποία η εκχώρηση άδειας χρήσης φάσματος δεν είναι προαπαιτούμενη.Radio spectrum has loomed out to be a scarce resource that needs to be carefully considered when designing 5G communication systems and Mobile Network Operators (MNOs) will need to revisit business models that were not of their prior interest (e.g. Cognitive Radio) or consider adopting new business models that emerge (e.g. Licensed Shared Access) so as to cover the extended capacity needs. Spectrum sharing is considered unavoidable for 5G systems and this thesis provides a solution for adaptive spectrum sharing under multiple authorization regimes based on a novel architecture framework that enables network elements to proceed in decisions for spectrum acquisition. The decision making process for spectrum acquisition proposed is a novel Adaptive Spectrum Sharing technique that uses Fuzzy Logic controllers to determine the most suitable spectrum sharing option and reinforcement learning to tune the fuzzy logic rules, aiming to find an optimal policy that MNO should follow in order to offer the desirable Quality of Service to its users, while preserving resources (either economical, or radio) when possible. The final contribution of this thesis is a mechanism that ensures fair access to spectrum among the users in scenarios in which conveying spectrum license is not prerequisite

    Machine Learning-Powered Management Architectures for Edge Services in 5G Networks

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen
    corecore