886 research outputs found

    Joint Pilot Design and Uplink Power Allocation in Multi-Cell Massive MIMO Systems

    Full text link
    This paper considers pilot design to mitigate pilot contamination and provide good service for everyone in multi-cell Massive multiple input multiple output (MIMO) systems. Instead of modeling the pilot design as a combinatorial assignment problem, as in prior works, we express the pilot signals using a pilot basis and treat the associated power coefficients as continuous optimization variables. We compute a lower bound on the uplink capacity for Rayleigh fading channels with maximum ratio detection that applies with arbitrary pilot signals. We further formulate the max-min fairness problem under power budget constraints, with the pilot signals and data powers as optimization variables. Because this optimization problem is non-deterministic polynomial-time hard due to signomial constraints, we then propose an algorithm to obtain a local optimum with polynomial complexity. Our framework serves as a benchmark for pilot design in scenarios with either ideal or non-ideal hardware. Numerical results manifest that the proposed optimization algorithms are close to the optimal solution obtained by exhaustive search for different pilot assignments and the new pilot structure and optimization bring large gains over the state-of-the-art suboptimal pilot design.Comment: 16 pages, 8 figures. Accepted to publish at IEEE Transactions on Wireless Communication

    Ubiquitous Cell-Free Massive MIMO Communications

    Get PDF
    Since the first cellular networks were trialled in the 1970s, we have witnessed an incredible wireless revolution. From 1G to 4G, the massive traffic growth has been managed by a combination of wider bandwidths, refined radio interfaces, and network densification, namely increasing the number of antennas per site. Due its cost-efficiency, the latter has contributed the most. Massive MIMO (multiple-input multiple-output) is a key 5G technology that uses massive antenna arrays to provide a very high beamforming gain and spatially multiplexing of users, and hence, increases the spectral and energy efficiency. It constitutes a centralized solution to densify a network, and its performance is limited by the inter-cell interference inherent in its cell-centric design. Conversely, ubiquitous cell-free Massive MIMO refers to a distributed Massive MIMO system implementing coherent user-centric transmission to overcome the inter-cell interference limitation in cellular networks and provide additional macro-diversity. These features, combined with the system scalability inherent in the Massive MIMO design, distinguishes ubiquitous cell-free Massive MIMO from prior coordinated distributed wireless systems. In this article, we investigate the enormous potential of this promising technology while addressing practical deployment issues to deal with the increased back/front-hauling overhead deriving from the signal co-processing.Comment: Published in EURASIP Journal on Wireless Communications and Networking on August 5, 201

    Large System Analysis of Power Normalization Techniques in Massive MIMO

    Get PDF
    Linear precoding has been widely studied in the context of Massive multiple-input-multiple-output (MIMO) together with two common power normalization techniques, namely, matrix normalization (MN) and vector normalization (VN). Despite this, their effect on the performance of Massive MIMO systems has not been thoroughly studied yet. The aim of this paper is to fulfill this gap by using large system analysis. Considering a system model that accounts for channel estimation, pilot contamination, arbitrary pathloss, and per-user channel correlation, we compute tight approximations for the signal-to-interference-plus-noise ratio and the rate of each user equipment in the system while employing maximum ratio transmission (MRT), zero forcing (ZF), and regularized ZF precoding under both MN and VN techniques. Such approximations are used to analytically reveal how the choice of power normalization affects the performance of MRT and ZF under uncorrelated fading channels. It turns out that ZF with VN resembles a sum rate maximizer while it provides a notion of fairness under MN. Numerical results are used to validate the accuracy of the asymptotic analysis and to show that in Massive MIMO, non-coherent interference and noise, rather than pilot contamination, are often the major limiting factors of the considered precoding schemes.Comment: 12 pages, 3 figures, Accepted for publication in the IEEE Transactions on Vehicular Technolog

    Joint Power Allocation and User Association Optimization for Massive MIMO Systems

    Full text link
    This paper investigates the joint power allocation and user association problem in multi-cell Massive MIMO (multiple-input multiple-output) downlink (DL) systems. The target is to minimize the total transmit power consumption when each user is served by an optimized subset of the base stations (BSs), using non-coherent joint transmission. We first derive a lower bound on the ergodic spectral efficiency (SE), which is applicable for any channel distribution and precoding scheme. Closed-form expressions are obtained for Rayleigh fading channels with either maximum ratio transmission (MRT) or zero forcing (ZF) precoding. From these bounds, we further formulate the DL power minimization problems with fixed SE constraints for the users. These problems are proved to be solvable as linear programs, giving the optimal power allocation and BS-user association with low complexity. Furthermore, we formulate a max-min fairness problem which maximizes the worst SE among the users, and we show that it can be solved as a quasi-linear program. Simulations manifest that the proposed methods provide good SE for the users using less transmit power than in small-scale systems and the optimal user association can effectively balance the load between BSs when needed. Even though our framework allows the joint transmission from multiple BSs, there is an overwhelming probability that only one BS is associated with each user at the optimal solution.Comment: 16 pages, 12 figures, Accepted by IEEE Trans. Wireless Commu

    Downlink Spectral Efficiency of Cell-Free Massive MIMO with Full-Pilot Zero-Forcing

    Full text link
    Cell-free Massive multiple-input multiple-output (MIMO) ensures ubiquitous communication at high spectral efficiency (SE) thanks to increased macro-diversity as compared cellular communications. However, system scalability and performance are limited by fronthauling traffic and interference. Unlike conventional precoding schemes that only suppress intra-cell interference, full-pilot zero-forcing (fpZF), introduced in [1], actively suppresses also inter-cell interference, without sharing channel state information (CSI) among the access points (APs). In this study, we derive a new closed-form expression for the downlink (DL) SE of a cell-free Massive MIMO system with multi-antenna APs and fpZF precoding, under imperfect CSI and pilot contamination. The analysis also includes max-min fairness DL power optimization. Numerical results show that fpZF significantly outperforms maximum ratio transmission scheme, without increasing the fronthauling overhead, as long as the system is sufficiently distributed.Comment: Paper published in 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP). {\copyright} 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other use
    corecore