24 research outputs found

    Rating and aspect-based opinion graph embeddings for explainable recommendations

    Full text link
    The success of neural network embeddings has entailed a renewed interest in using knowledge graphs for a wide variety of machine learning and information retrieval tasks. In particular, recent recommendation methods based on graph embeddings have shown state-of-the-art performance. In general, these methods encode latent rating patterns and content features. Differently from previous work, in this paper, we propose to exploit embeddings extracted from graphs that combine information from ratings and aspect-based opinions expressed in textual reviews. We then adapt and evaluate state-of-the-art graph embedding techniques over graphs generated from Amazon and Yelp reviews on six domains, outperforming baseline recommenders. Additionally, our method has the advantage of providing explanations that involve the coverage of aspect-based opinions given by users about recommended items.Comment: arXiv admin note: substantial text overlap with arXiv:2107.0322

    Dual Node and Edge Fairness-Aware Graph Partition

    Full text link
    Fair graph partition of social networks is a crucial step toward ensuring fair and non-discriminatory treatments in unsupervised user analysis. Current fair partition methods typically consider node balance, a notion pursuing a proportionally balanced number of nodes from all demographic groups, but ignore the bias induced by imbalanced edges in each cluster. To address this gap, we propose a notion edge balance to measure the proportion of edges connecting different demographic groups in clusters. We analyze the relations between node balance and edge balance, then with line graph transformations, we propose a co-embedding framework to learn dual node and edge fairness-aware representations for graph partition. We validate our framework through several social network datasets and observe balanced partition in terms of both nodes and edges along with good utility. Moreover, we demonstrate our fair partition can be used as pseudo labels to facilitate graph neural networks to behave fairly in node classification and link prediction tasks

    Graphing else matters: exploiting aspect opinions and ratings in explainable graph-based recommendations

    Full text link
    The success of neural network embeddings has entailed a renewed interest in using knowledge graphs for a wide variety of machine learning and information retrieval tasks. In particular, current recommendation methods based on graph embeddings have shown state-of-the-art performance. These methods commonly encode latent rating patterns and content features. Different from previous work, in this paper, we propose to exploit embeddings extracted from graphs that combine information from ratings and aspect-based opinions expressed in textual reviews. We then adapt and evaluate state-of-the-art graph embedding techniques over graphs generated from Amazon and Yelp reviews on six domains, outperforming baseline recommenders. Our approach has the advantage of providing explanations which leverage aspect-based opinions given by users about recommended items. Furthermore, we also provide examples of the applicability of recommendations utilizing aspect opinions as explanations in a visualization dashboard, which allows obtaining information about the most and least liked aspects of similar users obtained from the embeddings of an input graph

    FMMRec: Fairness-aware Multimodal Recommendation

    Full text link
    Recently, multimodal recommendations have gained increasing attention for effectively addressing the data sparsity problem by incorporating modality-based representations. Although multimodal recommendations excel in accuracy, the introduction of different modalities (e.g., images, text, and audio) may expose more users' sensitive information (e.g., gender and age) to recommender systems, resulting in potentially more serious unfairness issues. Despite many efforts on fairness, existing fairness-aware methods are either incompatible with multimodal scenarios, or lead to suboptimal fairness performance due to neglecting sensitive information of multimodal content. To achieve counterfactual fairness in multimodal recommendations, we propose a novel fairness-aware multimodal recommendation approach (dubbed as FMMRec) to disentangle the sensitive and non-sensitive information from modal representations and leverage the disentangled modal representations to guide fairer representation learning. Specifically, we first disentangle biased and filtered modal representations by maximizing and minimizing their sensitive attribute prediction ability respectively. With the disentangled modal representations, we mine the modality-based unfair and fair (corresponding to biased and filtered) user-user structures for enhancing explicit user representation with the biased and filtered neighbors from the corresponding structures, followed by adversarially filtering out sensitive information. Experiments on two real-world public datasets demonstrate the superiority of our FMMRec relative to the state-of-the-art baselines. Our source code is available at https://anonymous.4open.science/r/FMMRec

    TO EXPLAIN OR NOT TO EXPLAIN: AN EMPIRICAL INVESTIGATION OF AI-BASED RECOMMENDATIONS ON SOCIAL MEDIA PLATFORMS

    Get PDF
    AI-based social media recommendations have a great potential to improve user experience. However, often these recommendations do not match the user interest and create an unpleasant experience for the users. Moreover, the recommendation system being blackbox creates comprehensibility and transparency issues. This paper investigates social media recommendations from an end-user perspective. For the investigation, we used the popular social media platform Facebook and recruited regular users to conduct a qualitative analysis. We asked participants about the social media content suggestions, their comprehensibility, and explainability. Our analysis shows users mostly require explanation whenever they encounter unfamiliar content and to ensure their online data security. Furthermore, the users require concise, non-technical explanations along with the facility of controlled information flow. In addition, we observed that explanations impact the user’s perception of transparency, trust, and understandability. Finally, we have outlined some design implications and presented a synthesized framework based on our data analysis

    Counterfactual Collaborative Reasoning

    Full text link
    Causal reasoning and logical reasoning are two important types of reasoning abilities for human intelligence. However, their relationship has not been extensively explored under machine intelligence context. In this paper, we explore how the two reasoning abilities can be jointly modeled to enhance both accuracy and explainability of machine learning models. More specifically, by integrating two important types of reasoning ability -- counterfactual reasoning and (neural) logical reasoning -- we propose Counterfactual Collaborative Reasoning (CCR), which conducts counterfactual logic reasoning to improve the performance. In particular, we use recommender system as an example to show how CCR alleviate data scarcity, improve accuracy and enhance transparency. Technically, we leverage counterfactual reasoning to generate "difficult" counterfactual training examples for data augmentation, which -- together with the original training examples -- can enhance the model performance. Since the augmented data is model irrelevant, they can be used to enhance any model, enabling the wide applicability of the technique. Besides, most of the existing data augmentation methods focus on "implicit data augmentation" over users' implicit feedback, while our framework conducts "explicit data augmentation" over users explicit feedback based on counterfactual logic reasoning. Experiments on three real-world datasets show that CCR achieves better performance than non-augmented models and implicitly augmented models, and also improves model transparency by generating counterfactual explanations

    Interactive Contrastive Learning for Self-supervised Entity Alignment

    Full text link
    Self-supervised entity alignment (EA) aims to link equivalent entities across different knowledge graphs (KGs) without seed alignments. The current SOTA self-supervised EA method draws inspiration from contrastive learning, originally designed in computer vision based on instance discrimination and contrastive loss, and suffers from two shortcomings. Firstly, it puts unidirectional emphasis on pushing sampled negative entities far away rather than pulling positively aligned pairs close, as is done in the well-established supervised EA. Secondly, KGs contain rich side information (e.g., entity description), and how to effectively leverage those information has not been adequately investigated in self-supervised EA. In this paper, we propose an interactive contrastive learning model for self-supervised EA. The model encodes not only structures and semantics of entities (including entity name, entity description, and entity neighborhood), but also conducts cross-KG contrastive learning by building pseudo-aligned entity pairs. Experimental results show that our approach outperforms previous best self-supervised results by a large margin (over 9% average improvement) and performs on par with previous SOTA supervised counterparts, demonstrating the effectiveness of the interactive contrastive learning for self-supervised EA.Comment: Accepted by CIKM 202
    corecore