341 research outputs found

    On the unique representability of spikes over prime fields

    Get PDF
    For an integer n>2n>2, a rank-nn matroid is called an nn-spike if it consists of nn three-point lines through a common point such that, for all k{1,2,...,n1}k\in\{1, 2, ..., n - 1\}, the union of every set of kk of these lines has rank k+1k+1. Spikes are very special and important in matroid theory. In 2003 Wu found the exact numbers of nn-spikes over fields with 2, 3, 4, 5, 7 elements, and the asymptotic values for larger finite fields. In this paper, we prove that, for each prime number pp, a GF(pGF(p) representable nn-spike MM is only representable on fields with characteristic pp provided that n2p1n \ge 2p-1. Moreover, MM is uniquely representable over GF(p)GF(p).Comment: 8 page

    Subdeterminant Maximization via Nonconvex Relaxations and Anti-concentration

    Full text link
    Several fundamental problems that arise in optimization and computer science can be cast as follows: Given vectors v1,,vmRdv_1,\ldots,v_m \in \mathbb{R}^d and a constraint family B2[m]{\cal B}\subseteq 2^{[m]}, find a set SBS \in \cal{B} that maximizes the squared volume of the simplex spanned by the vectors in SS. A motivating example is the data-summarization problem in machine learning where one is given a collection of vectors that represent data such as documents or images. The volume of a set of vectors is used as a measure of their diversity, and partition or matroid constraints over [m][m] are imposed in order to ensure resource or fairness constraints. Recently, Nikolov and Singh presented a convex program and showed how it can be used to estimate the value of the most diverse set when B{\cal B} corresponds to a partition matroid. This result was recently extended to regular matroids in works of Straszak and Vishnoi, and Anari and Oveis Gharan. The question of whether these estimation algorithms can be converted into the more useful approximation algorithms -- that also output a set -- remained open. The main contribution of this paper is to give the first approximation algorithms for both partition and regular matroids. We present novel formulations for the subdeterminant maximization problem for these matroids; this reduces them to the problem of finding a point that maximizes the absolute value of a nonconvex function over a Cartesian product of probability simplices. The technical core of our results is a new anti-concentration inequality for dependent random variables that allows us to relate the optimal value of these nonconvex functions to their value at a random point. Unlike prior work on the constrained subdeterminant maximization problem, our proofs do not rely on real-stability or convexity and could be of independent interest both in algorithms and complexity.Comment: in FOCS 201

    Fairness in Streaming Submodular Maximization over a Matroid Constraint

    Full text link
    Streaming submodular maximization is a natural model for the task of selecting a representative subset from a large-scale dataset. If datapoints have sensitive attributes such as gender or race, it becomes important to enforce fairness to avoid bias and discrimination. This has spurred significant interest in developing fair machine learning algorithms. Recently, such algorithms have been developed for monotone submodular maximization under a cardinality constraint. In this paper, we study the natural generalization of this problem to a matroid constraint. We give streaming algorithms as well as impossibility results that provide trade-offs between efficiency, quality and fairness. We validate our findings empirically on a range of well-known real-world applications: exemplar-based clustering, movie recommendation, and maximum coverage in social networks.Comment: Accepted to ICML 2

    An algebraic framework for the greedy algorithm with applications to the core and Weber set of cooperative games

    Get PDF
    An algebraic model generalizing submodular polytopes is presented, where modular functions on partially ordered sets take over the role of vectors in Rn{\mathbb R}^n. This model unifies various generalizations of combinatorial models in which the greedy algorithm and the Monge algorithm are successful and generalizations of the notions of core and Weber set in cooperative game theory. As a further application, we show that an earlier model of ours as well as the algorithmic model of Queyranne, Spieksma and Tardella for the Monge algorithm can be treated within the framework of usual matroid theory (on unordered ground-sets), which permits also the efficient algorithmic solution of the intersection problem within this model. \u

    Matroid Online Bipartite Matching and Vertex Cover

    Full text link
    The Adwords and Online Bipartite Matching problems have enjoyed a renewed attention over the past decade due to their connection to Internet advertising. Our community has contributed, among other things, new models (notably stochastic) and extensions to the classical formulations to address the issues that arise from practical needs. In this paper, we propose a new generalization based on matroids and show that many of the previous results extend to this more general setting. Because of the rich structures and expressive power of matroids, our new setting is potentially of interest both in theory and in practice. In the classical version of the problem, the offline side of a bipartite graph is known initially while vertices from the online side arrive one at a time along with their incident edges. The objective is to maintain a decent approximate matching from which no edge can be removed. Our generalization, called Matroid Online Bipartite Matching, additionally requires that the set of matched offline vertices be independent in a given matroid. In particular, the case of partition matroids corresponds to the natural scenario where each advertiser manages multiple ads with a fixed total budget. Our algorithms attain the same performance as the classical version of the problems considered, which are often provably the best possible. We present 11/e1-1/e-competitive algorithms for Matroid Online Bipartite Matching under the small bid assumption, as well as a 11/e1-1/e-competitive algorithm for Matroid Online Bipartite Matching in the random arrival model. A key technical ingredient of our results is a carefully designed primal-dual waterfilling procedure that accommodates for matroid constraints. This is inspired by the extension of our recent charging scheme for Online Bipartite Vertex Cover.Comment: 19 pages, to appear in EC'1

    Determinantal Sieving

    Full text link
    We introduce determinantal sieving, a new, remarkably powerful tool in the toolbox of algebraic FPT algorithms. Given a polynomial P(X)P(X) on a set of variables X={x1,,xn}X=\{x_1,\ldots,x_n\} and a linear matroid M=(X,I)M=(X,\mathcal{I}) of rank kk, both over a field F\mathbb{F} of characteristic 2, in 2k2^k evaluations we can sieve for those terms in the monomial expansion of PP which are multilinear and whose support is a basis for MM. Alternatively, using 2k2^k evaluations of PP we can sieve for those monomials whose odd support spans MM. Applying this framework, we improve on a range of algebraic FPT algorithms, such as: 1. Solving qq-Matroid Intersection in time O(2(q2)k)O^*(2^{(q-2)k}) and qq-Matroid Parity in time O(2qk)O^*(2^{qk}), improving on O(4qk)O^*(4^{qk}) (Brand and Pratt, ICALP 2021) 2. TT-Cycle, Colourful (s,t)(s,t)-Path, Colourful (S,T)(S,T)-Linkage in undirected graphs, and the more general Rank kk (S,T)(S,T)-Linkage problem, all in O(2k)O^*(2^k) time, improving on O(2k+S)O^*(2^{k+|S|}) respectively O(2S+O(k2log(k+F)))O^*(2^{|S|+O(k^2 \log(k+|\mathbb{F}|))}) (Fomin et al., SODA 2023) 3. Many instances of the Diverse X paradigm, finding a collection of rr solutions to a problem with a minimum mutual distance of dd in time O(2r(r1)d/2)O^*(2^{r(r-1)d/2}), improving solutions for kk-Distinct Branchings from time 2O(klogk)2^{O(k \log k)} to O(2k)O^*(2^k) (Bang-Jensen et al., ESA 2021), and for Diverse Perfect Matchings from O(22O(rd))O^*(2^{2^{O(rd)}}) to O(2r2d/2)O^*(2^{r^2d/2}) (Fomin et al., STACS 2021) All matroids are assumed to be represented over a field of characteristic 2. Over general fields, we achieve similar results at the cost of using exponential space by working over the exterior algebra. For a class of arithmetic circuits we call strongly monotone, this is even achieved without any loss of running time. However, the odd support sieving result appears to be specific to working over characteristic 2

    Exchange distance of basis pairs in split matroids

    Full text link
    The basis exchange axiom has been a driving force in the development of matroid theory. However, the axiom gives only a local characterization of the relation of bases, which is a major stumbling block to further progress, and providing a global understanding of the structure of matroid bases is a fundamental goal in matroid optimization. While studying the structure of symmetric exchanges, Gabow proposed the problem that any pair of bases admits a sequence of symmetric exchanges. A different extension of the exchange axiom was proposed by White, who investigated the equivalence of compatible basis sequences. Farber studied the structure of basis pairs, and conjectured that the basis pair graph of any matroid is connected. These conjectures suggest that the family of bases of a matroid possesses much stronger structural properties than we are aware of. In the present paper, we study the distance of basis pairs of a matroid in terms of symmetric exchanges. In particular, we give an upper bound on the minimum number of exchanges needed to transform a basis pair into another for split matroids, a class that was motivated by the study of matroid polytopes from a tropical geometry point of view. As a corollary, we verify the above mentioned long-standing conjectures for this large class. Being a subclass of split matroids, our result settles the conjectures for paving matroids as well.Comment: 17 page

    Reconfiguration of basis pairs in regular matroids

    Full text link
    In recent years, combinatorial reconfiguration problems have attracted great attention due to their connection to various topics such as optimization, counting, enumeration, or sampling. One of the most intriguing open questions concerns the exchange distance of two matroid basis sequences, a problem that appears in several areas of computer science and mathematics. In 1980, White proposed a conjecture for the characterization of two basis sequences being reachable from each other by symmetric exchanges, which received a significant interest also in algebra due to its connection to toric ideals and Gr\"obner bases. In this work, we verify White's conjecture for basis sequences of length two in regular matroids, a problem that was formulated as a separate question by Farber, Richter, and Shan and Andres, Hochst\"attler, and Merkel. Most of previous work on White's conjecture has not considered the question from an algorithmic perspective. We study the problem from an optimization point of view: our proof implies a polynomial algorithm for determining a sequence of symmetric exchanges that transforms a basis pair into another, thus providing the first polynomial upper bound on the exchange distance of basis pairs in regular matroids. As a byproduct, we verify a conjecture of Gabow from 1976 on the serial symmetric exchange property of matroids for the regular case.Comment: 28 pages, 6 figure
    corecore