2 research outputs found

    When Fair Classification Meets Noisy Protected Attributes

    Full text link
    The operationalization of algorithmic fairness comes with several practical challenges, not the least of which is the availability or reliability of protected attributes in datasets. In real-world contexts, practical and legal impediments may prevent the collection and use of demographic data, making it difficult to ensure algorithmic fairness. While initial fairness algorithms did not consider these limitations, recent proposals aim to achieve algorithmic fairness in classification by incorporating noisiness in protected attributes or not using protected attributes at all. To the best of our knowledge, this is the first head-to-head study of fair classification algorithms to compare attribute-reliant, noise-tolerant and attribute-blind algorithms along the dual axes of predictivity and fairness. We evaluated these algorithms via case studies on four real-world datasets and synthetic perturbations. Our study reveals that attribute-blind and noise-tolerant fair classifiers can potentially achieve similar level of performance as attribute-reliant algorithms, even when protected attributes are noisy. However, implementing them in practice requires careful nuance. Our study provides insights into the practical implications of using fair classification algorithms in scenarios where protected attributes are noisy or partially available.Comment: Accepted at the 6th AAAI/ACM Conference on Artificial Intelligence, Ethics and Society (AIES) 202

    FLEA: Provably Fair Multisource Learning from Unreliable Training Data

    Full text link
    Fairness-aware learning aims at constructing classifiers that not only make accurate predictions, but do not discriminate against specific groups. It is a fast-growing area of machine learning with far-reaching societal impact. However, existing fair learning methods are vulnerable to accidental or malicious artifacts in the training data, which can cause them to unknowingly produce unfair classifiers. In this work we address the problem of fair learning from unreliable training data in the robust multisource setting, where the available training data comes from multiple sources, a fraction of which might be not representative of the true data distribution. We introduce FLEA, a filtering-based algorithm that allows the learning system to identify and suppress those data sources that would have a negative impact on fairness or accuracy if they were used for training. We show the effectiveness of our approach by a diverse range of experiments on multiple datasets. Additionally we prove formally that, given enough data, FLEA protects the learner against unreliable data as long as the fraction of affected data sources is less than half
    corecore