7 research outputs found

    Review on Analysis of LTE and Cognitive Radio Network using OFDM signal

    Get PDF
    Long Term Evolution (LTE) and Cognitive Radio Network (CRN) are built to achieve high data rates with low latency and packet optimized system. Orthogonal Frequency Division Multiple Access (OFDM) is adopted as the access technology for LTE in modern technology. OFDM provides several techniques and advantages for spectrum allocations to network segments, intra-cell Radio Resource Management (RRM) using Dynamic Subcarrier Assignment (DSA), Adaptive Power Allocation and Adaptive Modulation (AM) methods, providing the means for a flexible RRM scheme capable to address the problems of the service or cell area and provide solutions for proper network adaptation

    Improving Inter-service bandwidth fairness in Wireless Mesh Networks

    Get PDF
    Includes bibliographical references.We are currently experiencing many technological advances and as a result, a lot of applications and services are developed for use in homes, offices and out in the field. In order to attract users and customers, most applications and / or services are loaded with graphics, pictures and movie clips. This unfortunately means most of these next generation services put a lot of strain on networking resources, namely bandwidth. Efficient management of bandwidth in next generation wireless network is therefore important for ensuring fairness in bandwidth allocation amongst multiple services with diverse quality of service needs. A number of algorithms have been proposed for fairness in bandwidth allocation in wireless networks, and some researchers have used game theory to model the different aspects of fairness. However, most of the existing algorithms only ensure fairness for individual requests and disregard fairness among the classes of services while some other algorithms ensure fairness for the classes of services and disregard fairness among individual requests

    Amélioration de la performance des réseaux maillés sans fil cognitifs

    Get PDF
    Les réseaux maillés sans fil (WMN) sont une solution peu coûteuse et efficace afin de déployer rapidement des services d’accès à large bande dans des environnements dépourvus d’infrastructure. Toutefois, pour devenir un succès commercial, les WMN doivent supporter des applications en temps réel, telles que celles pour le multimédia et les services d’urgence. Or, ces applications génèrent du trafic critique qui requiert la mise en place de mécanismes de qualité de service (QoS). Alors que la capacité et la disponibilité de la bande passante des WMN monoradios limitent sévèrement la QoS pour ce type de trafic, les WMN cognitifs (CWMN) multiradios peuvent compenser ces limitations et offrir de meilleurs mécanismes de QoS. Ce projet de recherche propose d’améliorer la performance des WMN afin qu’ils puissent supporter la QoS requise pour satisfaire aux exigences strictes du trafic généré par des applications en temps réel

    Resource Allocation in Relay Enhanced Broadband Wireless Access Networks

    Get PDF
    The use of relay nodes to improve the performance of broadband wireless access (BWA) networks has been the subject of intense research activities in recent years. Relay enhanced BWA networks are anticipated to support multimedia traffic (i.e., voice, video, and data traffic). In order to guarantee service to network users, efficient resource distribution is imperative. Wireless multihop networks are characterized by two inherent dynamic characteristics: 1) the existence of wireless interference and 2) mobility of user nodes. Both mobility and interference greatly influence the ability of users to obtain the necessary resources for service. In this dissertation we conduct a comprehensive research study on the topic of resource allocation in the presence of interference and mobility. Specifically, this dissertation investigates the impact interference and mobility have on various aspects of resource allocation, ranging from fairness to spectrum utilization. We study four important resource allocation algorithms for relay enhanced BWA networks. The problems and our research achievements are briefly outlined as follows. First, we propose an interference aware rate adaptive subcarrier and power allocation algorithm using maximum multicommodity flow optimization. We consider the impact of the wireless interference constraints using Signal to Interference Noise Ratio (SINR). We exploit spatial reuse to allocate subcarriers in the network and show that an intelligent reuse of resources can improve throughput while mitigating the impact of interference. We provide a sub-optimal heuristic to solve the rate adaptive resource allocation problem. We demonstrate that aggressive spatial reuse and fine tuned-interference modeling garner advantages in terms of throughput, end-to-end delay and power distribution. Second, we investigate the benefits of decoupled optimization of interference aware routing and scheduling using SINR and spatial reuse to improve the overall achievable throughput. We model the routing optimization problem as a linear program using maximum concurrent flows. We develop an optimization formulation to schedule the link traffic such that interference is mitigated and time slots are reused appropriately based on spatial TDMA (STDMA). The scheduling problem is shown to be NP-hard and is solved using the column generation technique. We compare our formulations to conventional counterparts in the literature and show that our approach guarantees higher throughput by mitigating the effect of interference effectively. Third, we investigate the problem of multipath flow routing and fair bandwidth allocation under interference constraints for multihop wireless networks. We first develop a novel isotonic routing metric, RI3M, considering the influence of interflow and intraflow interference. Second, in order to ensure QoS, an interference-aware max-min fair bandwidth allocation algorithm, LMX:M3F, is proposed where the lexicographically largest bandwidth allocation vector is found among all optimal allocation vectors while considering constraints of interference on the flows. We compare with various interference based routing metrics and interference aware bandwidth allocation algorithms established in the literature to show that RI3M and LMX:M3F succeed in improving network performance in terms of delay, packet loss ratio and bandwidth usage. Lastly, we develop a user mobility prediction model using the Hidden Markov Model(HMM) in which prediction control is transferred to the various fixed relay nodes in the network. Given the HMM prediction model, we develop a routing protocol which uses the location information of the mobile user to determine the interference level on links in its surrounding neighborhood. We use SINR as the routing metric to calculate the interference on a specific link (link cost). We minimize the total cost of routing as a cost function of SINR while guaranteeing that the load on each link does not exceed its capacity. The routing protocol is formulated and solved as a minimum cost flow optimization problem. We compare our SINR based routing algorithm with conventional counterparts in the literature and show that our algorithm reinforces routing paths with high link quality and low latency, therefore improving overall system throughput. The research solutions obtained in this dissertation improve the service reliability and QoS assurance of emerging BWA networks

    The Spectrum Shortage Problem: Channel Assignment and Cognitive Networks

    Get PDF
    Recent studies have shown that the proliferation of wireless applications and services, experienced in the last decade, is leading to the challenging spectrum shortage problem. We provide a general overview regarding the spectrum shortage problem from the point of view of different technologies. First, we propose solutions based on multi-radio multi-channel wireless mesh networks in order to improve the usage of unlicensed wireless resources. Then, we move our focus on cognitive networks in order to analyze issues and solutions to opportunistically use licensed wireless resources. In wireless mesh networks, the spectrum shortage problem is addressed equipping each device with multiple radios which are turned on different orthogonal channels. We propose G-PaMeLA, which splits in local sub-problems the joint channel assignment and routing problem in multi-radio multi-channel wireless mesh networks. Results demonstrate that G-PaMeLA significantly improves network performance, in terms of packet loss and throughput fairness compared to algorithms in the literature. Unfortunately, even if orthogonal channels are used, wireless mesh networks result in what is called spectrum overcrowding. In order to address the spectrum overcrowding problem, careful analysis on spectrum frequencies has been conducted. These studies identified the possibility of transmitting on licensed channels, which are surprisingly underutilized. With the aim of addressing the resources problem using licensed channels, cognitive access and mesh networks have been developed. In cognitive access networks, we identify as the major problem the self-coexistence, which is the ability to access channels on a non-interfering basis with respect to licensed and unlicensed wireless devices. We propose two game theoretic frameworks which differentiate in having non-cooperative (NoRa) and cooperative (HeCtor) cognitive devices, respectively. Results show that HeCtor achieves higher throughput than NoRa but at the cost of higher computational complexity, which leads to a smaller throughput in cases where rapid changes occur in channels' occupancy. In contrast, NoRa attains the same throughput independent of the variability in channels' occupancy, hence cognitive devices adapt faster to such changes. In cognitive mesh networks, we analyze the coordination problem among cognitive devices because it is the major concern in implementing mesh networks in environments which change in time and space. We propose Connor, a clustering algorithm to address the coordination problem, which establishes common local control channels. Connor, in contrast with existing algorithms in the literature, does not require synchronization among cognitive mesh devices and allows a fast re-clustering when changes occur in channel's occupancy by licensed users. Results show that Connor performs better than existing algorithms in term of number of channels used for control purposes and time to reach and stay on stable configurations
    corecore