41 research outputs found

    Batch Control and Diagnosis

    Get PDF
    Batch processes are becoming more and more important in the chemical process industry, where they are used in the manufacture of specialty materials, which often are highly profitable. Some examples where batch processes are important are the manufacturing of pharmaceuticals, polymers, and semiconductors. The focus of this thesis is exception handling and fault detection in batch control. In the first part an internal model approach for exception handling is proposed where each equipment object in the control system is extended with a state-machine based model that is used on-line to structure and implement the safety interlock logic. The thesis treats exception handling both at the unit supervision level and at the recipe level. The goal is to provide a structure, which makes the implementation of exception handling in batch processes easier. The exception handling approach has been implemented in JGrafchart and tested on the batch pilot plant Procel at Universitat Politècnica de Catalunya in Barcelona, Spain. The second part of the thesis is focused on fault detection in batch processes. A process fault can be any kind of malfunction in a dynamic system or plant, which leads to unacceptable performance such as personnel injuries or bad product quality. Fault detection in dynamic processes is a large area of research where several different categories of methods exist, e.g., model-based and process history-based methods. The finite duration and non-linear behavior of batch processes where the variables change significantly over time and the quality variables are only measured at the end of the batch lead to that the monitoring of batch processes is quite different from the monitoring of continuous processes. A benchmark batch process simulation model is used for comparison of several fault detection methods. A survey of multivariate statistical methods for batch process monitoring is performed and new algorithms for two of the methods are developed. It is also shown that by combining model-based estimation and multivariate methods fault detection can be improved even though the process is not fully observable

    Nonlinear Estimation for Model Based Fault Diagnosis of Nonlinear Chemical Systems

    Get PDF
    Nonlinear estimation techniques play an important role for process monitoring since some states and most of the parameters cannot be directly measured. There are many techniques available for nonlinear state and parameter estimation, i.e., extended Kalman filter (EKF), unscented Kalman filter (UKF), particle filtering (PF) and moving horizon estimation (MHE) etc. However, many issues related to the available techniques are to be solved. This dissertation discusses three important techniques in nonlinear estimation, which are the application of unscented Kalman filters, improvement of moving horizon estimation via computation of the arrival cost and different implementations of extended Kalman filters. First the use of several estimation algorithms such as linearized Kalman filter (LKF), extended Kalman filter (EKF), unscented Kalman filter (UKF) and moving horizon estimation (MHE) are investigated for nonlinear systems with special emphasis on UKF as it is a relatively new technique. Detailed case studies show that UKF has advantages over EKF for highly nonlinear unconstrained estimation problems while MHE performs better for systems with constraints. Moving horizon estimation alleviates the computational burden of solving a full information estimation problem by considering a finite horizon of the measurement data; however, it is non-trivial to determine the arrival cost. A commonly used approach for computing the arrival cost is to use a first order Taylor series approximation of the nonlinear model and then apply an extended Kalman filter. The second contribution of this dissertation is that an approach to compute the arrival cost for moving horizon estimation based on an unscented Kalman filter is proposed. It is found that such a moving horizon estimator performs better in some cases than if one based on an extended Kalman filter. It is a promising alternative for approximating the arrival cost for MHE. Many comparative studies, often based upon simulation results, between extended Kalman filters (EKF) and other estimation methodologies such as moving horizon estimation, unscented Kalman filter, or particle filtering have been published over the last few years. However, the results returned by the extended Kalman filter are affected by the algorithm used for its implementation and some implementations of EKF may lead to inaccurate results. In order to address this point, this dissertation investigates several different algorithms for implementing extended Kalman filters. Advantages and drawbacks of different EKF implementations are discussed in detail and illustrated in some comparative simulation studies. Continuously predicting covariance matrix for EKF results in an accurate implementation. Evaluating covariance matrix at discrete times can also be applied. Good performance can be expected if covariance matrix is obtained from integrating the continuous-time equation or if the sensitivity equation is used for computing the Jacobian matrix

    Control of solution MMA polymerization in a CSTR

    Get PDF

    A Model-Based Framework for the Smart Manufacturing of Polymers

    Get PDF
    It is hard to point a daily activity in which polymeric materials or plastics are not involved. The synthesis of polymers occurs by reacting small molecules together to form, under certain conditions, long molecules. In polymer synthesis, it is mandatory to assure uniformity between batches, high-quality of end-products, efficiency, minimum environmental impact, and safety. It remains as a major challenge the establishment of operational conditions capable of achieving all objectives together. In this dissertation, different model-centric strategies are combined, assessed, and tested for two polymerization systems. The first system is the synthesis of polyacrylamide in aqueous solution using potassium persulfate as initiator in a semi-batch reactor. In this system, the proposed framework integrates nonlinear modelling, dynamic optimization, advanced control, and nonlinear state estimation. The objectives include the achievement of desired polymer characteristics through feedback control and a complete motoring during the reaction. The estimated properties are close to experimental values, and there is a visible noise reduction. A 42% improvement of set point accomplishment in average is observed when comparing feedback control combined with a hybrid discrete-time extended Kalman filter (h-DEKF) and feedback control only. The 4-state geometric observer (GO) with passive structure, another state estimation strategy, shows the best performance. Besides achieving smooth signal processing, the observer improves 52% the estimation of the final molecular weight distribution when compared with the h-DEKF. The second system corresponds to the copolymerization of ethylene with 1,9-decadiene using a metallocene catalyst in a semi-batch reactor. The evaluated operating conditions consider different diene concentrations and reaction temperatures. Initially, the nonlinear model is validated followed by a global sensitivity analysis, which permits the selection of the important parameters. Afterwards, the most important kinetic parameters are estimated online using an extended Kalman filter (EKF), a variation of the GO that uses a preconditioner, and a data-driven strategy referred as the retrospective cost model refinement (RCMR) algorithm. The first two strategies improve the measured signal, but fail to predict other properties. The RCMR algorithm demonstrates an adequate estimation of the unknown parameters, and the estimates converge close to theoretical values without requiring prior knowledge

    Multi-Rate Observers for Model-Based Process Monitoring

    Get PDF
    Very often, critical quantities related to safety, product quality and economic performance of a chemical process cannot be measured on line. In an attempt to overcome the challenges caused by inadequate on-line measurements, state estimation provides an alternative approach to reconstruct the unmeasured state variables by utilizing available on-line measurements and a process model. Chemical processes usually possess strong nonlinearities, and involve different types of measurements. It remains a challenging task to incorporate multiple measurements with different sampling rates and different measurement delays into a unified estimation algorithmic framework. This dissertation seeks to present developments in the field of state estimation by providing the theoretical advances in multi-rate multi-delay observer design. A delay-free multi-rate observer is first designed in linear systems under asynchronous sampling. Sufficient and explicit conditions in terms of maximum sampling period are derived to guarantee exponential stability of the observer, using Lyapunov’s second method. A dead time compensation approach is developed to compensate for the effect of measurement delay. Based on the multi-rate formulation, optimal multi-rate observer design is studied in two classes of linear systems where optimal gain selection is performed by formulating and solving an optimization problem. Then a multi-rate observer is developed in nonlinear systems with asynchronous sampling. The input-to-output stability is established for the estimation errors with respect to measurement errors using the Karafyllis-Jiang vector small-gain theorem. Measurement delay is also accounted for in the observer design using dead time compensation. Both the multi-rate designs in linear and nonlinear systems provide robustness with respect to perturbations in the sampling schedule. Multi-rate multi-delay observer is shown to be effective for process monitoring in polymerization reactors. A series of three polycondensation reactors and an industrial gas-phase polyethylene reactor are used to evaluate the observer performance. Reliable on-line estimates are obtained from the multi-rate multi-delay observer through simulation

    Novel strategies for process control based on hybrid semi-parametric mathematical systems

    Get PDF
    Tese de doutoramento. Engenharia QuĂ­mica. Universidade do Porto. Faculdade de Engenharia. 201

    Nonlinear model predictive control using automatic differentiation

    Get PDF
    Although nonlinear model predictive control (NMPC) might be the best choice for a nonlinear plant, it is still not widely used. This is mainly due to the computational burden associated with solving online a set of nonlinear differential equations and a nonlinear dynamic optimization problem in real time. This thesis is concerned with strategies aimed at reducing the computational burden involved in different stages of the NMPC such as optimization problem, state estimation, and nonlinear model identification. A major part of the computational burden comes from function and derivative evaluations required in different parts of the NMPC algorithm. In this work, the problem is tackled using a recently introduced efficient tool, the automatic differentiation (AD). Using the AD tool, a function is evaluated together with all its partial derivative from the code defining the function with machine accuracy. A new NMPC algorithm based on nonlinear least square optimization is proposed. In a first–order method, the sensitivity equations are integrated using a linear formula while the AD tool is applied to get their values accurately. For higher order approximations, more terms of the Taylor expansion are used in the integration for which the AD is effectively used. As a result, the gradient of the cost function against control moves is accurately obtained so that the online nonlinear optimization can be efficiently solved. In many real control cases, the states are not measured and have to be estimated for each instance when a solution of the model equations is needed. A nonlinear extended version of the Kalman filter (EKF) is added to the NMPC algorithm for this purpose. The AD tool is used to calculate the required derivatives in the local linearization step of the filter automatically and accurately. Offset is another problem faced in NMPC. A new nonlinear integration is devised for this case to eliminate the offset from the output response. In this method, an integrated disturbance model is added to the process model input or output to correct the plant/model mismatch. The time response of the controller is also improved as a by–product. The proposed NMPC algorithm has been applied to an evaporation process and a two continuous stirred tank reactor (two–CSTR) process with satisfactory results to cope with large setpoint changes, unmeasured severe disturbances, and process/model mismatches. When the process equations are not known (black–box) or when these are too complicated to be used in the controller, modelling is needed to create an internal model for the controller. In this thesis, a continuous time recurrent neural network (CTRNN) in a state–space form is developed to be used in NMPC context. An efficient training algorithm for the proposed network is developed using AD tool. By automatically generating Taylor coefficients, the algorithm not only solves the differentiation equations of the network but also produces the sensitivity for the training problem. The same approach is also used to solve online the optimization problem of the NMPC. The proposed CTRNN and the predictive controller were tested on an evaporator and two–CSTR case studies. A comparison with other approaches shows that the new algorithm can considerably reduce network training time and improve solution accuracy. For a third case study, the ALSTOM gasifier, a NMPC via linearization algorithm is implemented to control the system. In this work a nonlinear state–space class Wiener model is used to identify the black–box model of the gasifier. A linear model of the plant at zero–load is adopted as a base model for prediction. Then, a feedforward neural network is created as the static gain for a particular output channel, fuel gas pressure, to compensate its strong nonlinear behavior observed in open–loop simulations. By linearizing the neural network at each sampling time, the static nonlinear gain provides certain adaptation to the linear base model. The AD tool is used here to linearize the neural network efficiently. Noticeable performance improvement is observed when compared with pure linear MPC. The controller was able to pass all tests specified in the benchmark problem at all load conditions.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Multi-Level Iteration Schemes with Adaptive Level Choice for Nonlinear Model Predictive Control

    Get PDF
    In this thesis we develop the Multi-Level Iteration schemes (MLI), a numerical method for Nonlinear Model Predictive Control (NMPC) where the dynamical models are described by ordinary differential equations. The method is based on Direct Multiple Shooting for the discretization of the optimal control problems to be solved in each sample. The arising parametric nonlinear problems are solved approximately by setting up a generalized tangential predictor in a preparation phase. This generalized tangential predictor is given by a quadratic program (QP), which implicitly defines a piecewise affine linear feedback law. The feedback law is then evaluated in a feedback phase by solving the QP for the current state estimate as soon as it becomes known to the controller. The method developed in this thesis yields significant computational savings by updating the matrix and vector data of the tangential predictor in a hierarchy of four levels. The lowest level performs no updates and just calculates the feedback for a new initial state estimate. The second level updates the QP constraint functions and approximates the QP gradient. The third level updates the QP constraint functions and calculates the exact QP gradient. The fourth level evaluates all matrix and vector data of the QP. Feedback schemes are then assembled by choosing a level for each sample. This yields a successive update of the piecewise affine linear feedback law that is implicitly defined by the generalized tangential predictor. We present and discuss four strategies for data communication between the levels in a scheme and we describe how schemes with fixed level choices can be assembled in practice. We give local convergence theory for each level type holding its own set of primal-dual variables for fixed initial values, and discuss existing convergence theory for the case of a closed-loop process. We outline a modification of the levels that yields additional computational savings. For the adaptive choice of the levels at runtime, we develop two contraction-based criteria to decide whether the currently used linearization remains valid and use them in an algorithm to decide which level to employ for the next sample. Furthermore, we propose a criterion applicable to online estimation. The criterion provides additional information for the level decision for the next sample. Focusing on the second lowest level, we propose an efficient algorithm for suboptimal NMPC. For the presented algorithmic approaches, we describe structure exploitation in the form of tailored condensing, outline the Online Active Set Strategy as an efficient way to solve the quadratic subproblems and extend the method to linear least-squares problems. We develop iterative matrix-free methods for one contraction-based criterion, which estimates the spectral radius of the iteration matrix. We describe three application fields where MLI provides significant computational savings compared to state-of-the-art numerical methods for NMPC. For both fixed and adaptive MLI schemes, we carry out extensive numerical testings for challenging nonlinear test problems and compare the performance of MLI to a state-of-the-art numerical method for NMPC. The schemes obtained by adaptive MLI are computationally much cheaper while showing comparable performance. By construction, the adaptive MLI allows giving feedback with a much higher frequency, which significantly improves controller performance for the considered test problems. To perform the numerical experiments, we have implemented the proposed method within a MATLAB(R) based software called MLI, which makes use of a software package for the automatic derivative generation of first and higher order for the solution of the dynamic model as well as objective and constraint functions, which performs structure exploitation by condensing, and which efficiently solves the parametric quadratic subproblems by using a software package that provides an implementation of the Online Active Set Strategy

    Benelux meeting on systems and control, 23rd, March 17-19, 2004, Helvoirt, The Netherlands

    Get PDF
    Book of abstract
    corecore