85 research outputs found

    Masked and Swapped Sequence Modeling for Next Novel Basket Recommendation in Grocery Shopping

    Full text link
    Next basket recommendation (NBR) is the task of predicting the next set of items based on a sequence of already purchased baskets. It is a recommendation task that has been widely studied, especially in the context of grocery shopping. In next basket recommendation (NBR), it is useful to distinguish between repeat items, i.e., items that a user has consumed before, and explore items, i.e., items that a user has not consumed before. Most NBR work either ignores this distinction or focuses on repeat items. We formulate the next novel basket recommendation (NNBR) task, i.e., the task of recommending a basket that only consists of novel items, which is valuable for both real-world application and NBR evaluation. We evaluate how existing NBR methods perform on the NNBR task and find that, so far, limited progress has been made w.r.t. the NNBR task. To address the NNBR task, we propose a simple bi-directional transformer basket recommendation model (BTBR), which is focused on directly modeling item-to-item correlations within and across baskets instead of learning complex basket representations. To properly train BTBR, we propose and investigate several masking strategies and training objectives: (i) item-level random masking, (ii) item-level select masking, (iii) basket-level all masking, (iv) basket-level explore masking, and (v) joint masking. In addition, an item-basket swapping strategy is proposed to enrich the item interactions within the same baskets. We conduct extensive experiments on three open datasets with various characteristics. The results demonstrate the effectiveness of BTBR and our masking and swapping strategies for the NNBR task. BTBR with a properly selected masking and swapping strategy can substantially improve NNBR performance.Comment: To appear at RecSys'2

    Personalized Category Frequency prediction for Buy It Again recommendations

    Full text link
    Buy It Again (BIA) recommendations are crucial to retailers to help improve user experience and site engagement by suggesting items that customers are likely to buy again based on their own repeat purchasing patterns. Most existing BIA studies analyze guests personalized behavior at item granularity. A category-based model may be more appropriate in such scenarios. We propose a recommendation system called a hierarchical PCIC model that consists of a personalized category model (PC model) and a personalized item model within categories (IC model). PC model generates a personalized list of categories that customers are likely to purchase again. IC model ranks items within categories that guests are likely to consume within a category. The hierarchical PCIC model captures the general consumption rate of products using survival models. Trends in consumption are captured using time series models. Features derived from these models are used in training a category-grained neural network. We compare PCIC to twelve existing baselines on four standard open datasets. PCIC improves NDCG up to 16 percent while improving recall by around 2 percent. We were able to scale and train (over 8 hours) PCIC on a large dataset of 100M guests and 3M items where repeat categories of a guest out number repeat items. PCIC was deployed and AB tested on the site of a major retailer, leading to significant gains in guest engagement.Comment: This work appears as a short paper in RecSys 202

    A probabilistic model to resolve diversity-accuracy challenge of recommendation systems

    Full text link
    Recommendation systems have wide-spread applications in both academia and industry. Traditionally, performance of recommendation systems has been measured by their precision. By introducing novelty and diversity as key qualities in recommender systems, recently increasing attention has been focused on this topic. Precision and novelty of recommendation are not in the same direction, and practical systems should make a trade-off between these two quantities. Thus, it is an important feature of a recommender system to make it possible to adjust diversity and accuracy of the recommendations by tuning the model. In this paper, we introduce a probabilistic structure to resolve the diversity-accuracy dilemma in recommender systems. We propose a hybrid model with adjustable level of diversity and precision such that one can perform this by tuning a single parameter. The proposed recommendation model consists of two models: one for maximization of the accuracy and the other one for specification of the recommendation list to tastes of users. Our experiments on two real datasets show the functionality of the model in resolving accuracy-diversity dilemma and outperformance of the model over other classic models. The proposed method could be extensively applied to real commercial systems due to its low computational complexity and significant performance.Comment: 19 pages, 5 figure

    Sequential recommender systems: Challenges, progress and prospects

    Full text link
    © 2019 International Joint Conferences on Artificial Intelligence. All rights reserved. The emerging topic of sequential recommender systems (SRSs) has attracted increasing attention in recent years. Different from the conventional recommender systems (RSs) including collaborative filtering and content-based filtering, SRSs try to understand and model the sequential user behaviors, the interactions between users and items, and the evolution of users' preferences and item popularity over time. SRSs involve the above aspects for more precise characterization of user contexts, intent and goals, and item consumption trend, leading to more accurate, customized and dynamic recommendations. In this paper, we provide a systematic review on SRSs. We first present the characteristics of SRSs, and then summarize and categorize the key challenges in this research area, followed by the corresponding research progress consisting of the most recent and representative developments on this topic. Finally, we discuss the important research directions in this vibrant area
    • …
    corecore