334 research outputs found

    Unified Contrastive Fusion Transformer for Multimodal Human Action Recognition

    Full text link
    Various types of sensors have been considered to develop human action recognition (HAR) models. Robust HAR performance can be achieved by fusing multimodal data acquired by different sensors. In this paper, we introduce a new multimodal fusion architecture, referred to as Unified Contrastive Fusion Transformer (UCFFormer) designed to integrate data with diverse distributions to enhance HAR performance. Based on the embedding features extracted from each modality, UCFFormer employs the Unified Transformer to capture the inter-dependency among embeddings in both time and modality domains. We present the Factorized Time-Modality Attention to perform self-attention efficiently for the Unified Transformer. UCFFormer also incorporates contrastive learning to reduce the discrepancy in feature distributions across various modalities, thus generating semantically aligned features for information fusion. Performance evaluation conducted on two popular datasets, UTD-MHAD and NTU RGB+D, demonstrates that UCFFormer achieves state-of-the-art performance, outperforming competing methods by considerable margins

    Cross-Attention is Not Enough: Incongruity-Aware Multimodal Sentiment Analysis and Emotion Recognition

    Full text link
    Fusing multiple modalities for affective computing tasks has proven effective for performance improvement. However, how multimodal fusion works is not well understood, and its use in the real world usually results in large model sizes. In this work, on sentiment and emotion analysis, we first analyze how the salient affective information in one modality can be affected by the other in crossmodal attention. We find that inter-modal incongruity exists at the latent level due to crossmodal attention. Based on this finding, we propose a lightweight model via Hierarchical Crossmodal Transformer with Modality Gating (HCT-MG), which determines a primary modality according to its contribution to the target task and then hierarchically incorporates auxiliary modalities to alleviate inter-modal incongruity and reduce information redundancy. The experimental evaluation on three benchmark datasets: CMU-MOSI, CMU-MOSEI, and IEMOCAP verifies the efficacy of our approach, showing that it: 1) outperforms major prior work by achieving competitive results and can successfully recognize hard samples; 2) mitigates the inter-modal incongruity at the latent level when modalities have mismatched affective tendencies; 3) reduces model size to less than 1M parameters while outperforming existing models of similar sizes.Comment: *Equal contributio

    Multi-stage Factorized Spatio-Temporal Representation for RGB-D Action and Gesture Recognition

    Full text link
    RGB-D action and gesture recognition remain an interesting topic in human-centered scene understanding, primarily due to the multiple granularities and large variation in human motion. Although many RGB-D based action and gesture recognition approaches have demonstrated remarkable results by utilizing highly integrated spatio-temporal representations across multiple modalities (i.e., RGB and depth data), they still encounter several challenges. Firstly, vanilla 3D convolution makes it hard to capture fine-grained motion differences between local clips under different modalities. Secondly, the intricate nature of highly integrated spatio-temporal modeling can lead to optimization difficulties. Thirdly, duplicate and unnecessary information can add complexity and complicate entangled spatio-temporal modeling. To address the above issues, we propose an innovative heuristic architecture called Multi-stage Factorized Spatio-Temporal (MFST) for RGB-D action and gesture recognition. The proposed MFST model comprises a 3D Central Difference Convolution Stem (CDC-Stem) module and multiple factorized spatio-temporal stages. The CDC-Stem enriches fine-grained temporal perception, and the multiple hierarchical spatio-temporal stages construct dimension-independent higher-order semantic primitives. Specifically, the CDC-Stem module captures bottom-level spatio-temporal features and passes them successively to the following spatio-temporal factored stages to capture the hierarchical spatial and temporal features through the Multi- Scale Convolution and Transformer (MSC-Trans) hybrid block and Weight-shared Multi-Scale Transformer (WMS-Trans) block. The seamless integration of these innovative designs results in a robust spatio-temporal representation that outperforms state-of-the-art approaches on RGB-D action and gesture recognition datasets.Comment: ACM MM'2
    • …
    corecore