462 research outputs found

    Personalized Acoustic Modeling by Weakly Supervised Multi-Task Deep Learning using Acoustic Tokens Discovered from Unlabeled Data

    Full text link
    It is well known that recognizers personalized to each user are much more effective than user-independent recognizers. With the popularity of smartphones today, although it is not difficult to collect a large set of audio data for each user, it is difficult to transcribe it. However, it is now possible to automatically discover acoustic tokens from unlabeled personal data in an unsupervised way. We therefore propose a multi-task deep learning framework called a phoneme-token deep neural network (PTDNN), jointly trained from unsupervised acoustic tokens discovered from unlabeled data and very limited transcribed data for personalized acoustic modeling. We term this scenario "weakly supervised". The underlying intuition is that the high degree of similarity between the HMM states of acoustic token models and phoneme models may help them learn from each other in this multi-task learning framework. Initial experiments performed over a personalized audio data set recorded from Facebook posts demonstrated that very good improvements can be achieved in both frame accuracy and word accuracy over popularly-considered baselines such as fDLR, speaker code and lightly supervised adaptation. This approach complements existing speaker adaptation approaches and can be used jointly with such techniques to yield improved results.Comment: 5 pages, 5 figures, published in IEEE ICASSP 201

    Transfer Learning from Audio-Visual Grounding to Speech Recognition

    Full text link
    Transfer learning aims to reduce the amount of data required to excel at a new task by re-using the knowledge acquired from learning other related tasks. This paper proposes a novel transfer learning scenario, which distills robust phonetic features from grounding models that are trained to tell whether a pair of image and speech are semantically correlated, without using any textual transcripts. As semantics of speech are largely determined by its lexical content, grounding models learn to preserve phonetic information while disregarding uncorrelated factors, such as speaker and channel. To study the properties of features distilled from different layers, we use them as input separately to train multiple speech recognition models. Empirical results demonstrate that layers closer to input retain more phonetic information, while following layers exhibit greater invariance to domain shift. Moreover, while most previous studies include training data for speech recognition for feature extractor training, our grounding models are not trained on any of those data, indicating more universal applicability to new domains.Comment: Accepted to Interspeech 2019. 4 pages, 2 figure
    • …
    corecore