173,131 research outputs found

    The Factorization method for three dimensional Electrical Impedance Tomography

    Get PDF
    The use of the Factorization method for Electrical Impedance Tomography has been proved to be very promising for applications in the case where one wants to find inhomogeneous inclusions in a known background. In many situations, the inspected domain is three dimensional and is made of various materials. In this case, the main challenge in applying the Factorization method consists in computing the Neumann Green's function of the background medium. We explain how we solve this difficulty and demonstrate the capability of the Factorization method to locate inclusions in realistic inhomogeneous three dimensional background media from simulated data obtained by solving the so-called complete electrode model. We also perform a numerical study of the stability of the Factorization method with respect to various modelling errors.Comment: 16 page

    Fast model-fitting of Bayesian variable selection regression using the iterative complex factorization algorithm

    Full text link
    Bayesian variable selection regression (BVSR) is able to jointly analyze genome-wide genetic datasets, but the slow computation via Markov chain Monte Carlo (MCMC) hampered its wide-spread usage. Here we present a novel iterative method to solve a special class of linear systems, which can increase the speed of the BVSR model-fitting tenfold. The iterative method hinges on the complex factorization of the sum of two matrices and the solution path resides in the complex domain (instead of the real domain). Compared to the Gauss-Seidel method, the complex factorization converges almost instantaneously and its error is several magnitude smaller than that of the Gauss-Seidel method. More importantly, the error is always within the pre-specified precision while the Gauss-Seidel method is not. For large problems with thousands of covariates, the complex factorization is 10 -- 100 times faster than either the Gauss-Seidel method or the direct method via the Cholesky decomposition. In BVSR, one needs to repetitively solve large penalized regression systems whose design matrices only change slightly between adjacent MCMC steps. This slight change in design matrix enables the adaptation of the iterative complex factorization method. The computational innovation will facilitate the wide-spread use of BVSR in reanalyzing genome-wide association datasets.Comment: Accepted versio
    • …
    corecore