20,434 research outputs found

    Agents and E-commerce: Beyond Automation

    Get PDF
    The fast-growing information and communication technologies have shifted the contemporary commerce in both its information and market spaces. Businesses demand a new generation of agile and adaptive commerce systems. Towards this end, software agents, a type of autonomous artifacts, have been viewed as a promising solution. They have been taking an increasingly important part in facilitating e-commerce operations in the last two decades. This article presents a systematized overview of the diversity of agent applications in commerce. The paper argues that agents start playing more substantial role in determining social affairs. They also have a strong potential to be used to build the future highly responsive and smart e-commerce systems. The opportunities and challenges presented by proliferation of agent technologies in e-commerce necessitate the development of insights into their place in information systems research, as well as practical implications for the management

    TOPOLOGY-AWARE APPROACH FOR THE EMERGENCE OF SOCIAL NORMS IN MULTIAGENT SYSTEMS

    Get PDF
    Social norms facilitate agent coordination and conflict resolution without explicit communication. Norms generally involve restrictions on a set of actions or behaviors of agents to a particular strategy and can significantly reduce the cost of coordination. There has been recent progress in multiagent systems (MAS) research to develop a deep understanding of the social norm formation process. This includes developing mechanisms to create social norms in an effective and efficient manner. The hypoth- esis of this dissertation is that equipping agents in networked MAS with “network thinking” capabilities and using this contextual knowledge to form social norms in an effective and efficient manner improves the performance of the MAS. This disser- tation investigates the social norm emergence problem in conventional norms (where there is no conflict between individual and collective interests) and essential norms (where agents need to explicitly cooperate to achieve socially-efficient behavior) from a game-theoretic perspective. First, a comprehensive investigation of the social norm formation problem is performed in various types of networked MAS with an emphasis on the effect of the topological structures on the process. Based on the insights gained from these network-theoretic investigations, novel topology-aware decentralized mech- anisms are developed that facilitate the emergence of social norms suitable for various environments. It addresses the convention emergence problem in both small and large conventional norm spaces and equip agents to predict the topological structure to use the suitable convention mechanisms. It addresses the cooperation emergence prob- lem in the essential norm space by harnessing agent commitments and altruism where appropriate. Extensive simulation based experimentation has been conducted on dif- ferent network topologies by varying the topological features and agent interaction models. Comparisons with state-of-the-art norm formation techniques show that pro- posed mechanisms facilitate significant improvement in performance in a variety of networks

    Self-organising agent communities for autonomic resource management

    No full text
    The autonomic computing paradigm addresses the operational challenges presented by increasingly complex software systems by proposing that they be composed of many autonomous components, each responsible for the run-time reconfiguration of its own dedicated hardware and software components. Consequently, regulation of the whole software system becomes an emergent property of local adaptation and learning carried out by these autonomous system elements. Designing appropriate local adaptation policies for the components of such systems remains a major challenge. This is particularly true where the system’s scale and dynamism compromise the efficiency of a central executive and/or prevent components from pooling information to achieve a shared, accurate evidence base for their negotiations and decisions.In this paper, we investigate how a self-regulatory system response may arise spontaneously from local interactions between autonomic system elements tasked with adaptively consuming/providing computational resources or services when the demand for such resources is continually changing. We demonstrate that system performance is not maximised when all system components are able to freely share information with one another. Rather, maximum efficiency is achieved when individual components have only limited knowledge of their peers. Under these conditions, the system self-organises into appropriate community structures. By maintaining information flow at the level of communities, the system is able to remain stable enough to efficiently satisfy service demand in resource-limited environments, and thus minimise any unnecessary reconfiguration whilst remaining sufficiently adaptive to be able to reconfigure when service demand changes

    COIN@AAMAS2015

    Get PDF
    COIN@AAMAS2015 is the nineteenth edition of the series and the fourteen papers included in these proceedings demonstrate the vitality of the community and will provide the grounds for a solid workshop program and what we expect will be a most enjoyable and enriching debate.Peer reviewe

    Organization based multiagent architecture for distributed environments

    Get PDF
    [EN]Distributed environments represent a complex field in which applied solutions should be flexible and include significant adaptation capabilities. These environments are related to problems where multiple users and devices may interact, and where simple and local solutions could possibly generate good results, but may not be effective with regards to use and interaction. There are many techniques that can be employed to face this kind of problems, from CORBA to multi-agent systems, passing by web-services and SOA, among others. All those methodologies have their advantages and disadvantages that are properly analyzed in this documents, to finally explain the new architecture presented as a solution for distributed environment problems. The new architecture for solving complex solutions in distributed environments presented here is called OBaMADE: Organization Based Multiagent Architecture for Distributed Environments. It is a multiagent architecture based on the organizations of agents paradigm, where the agents in the architecture are structured into organizations to improve their organizational capabilities. The reasoning power of the architecture is based on the Case-Based Reasoning methology, being implemented in a internal organization that uses agents to create services to solve the external request made by the users. The OBaMADE architecture has been successfully applied to two different case studies where its prediction capabilities have been properly checked. Those case studies have showed optimistic results and, being complex systems, have demonstrated the abstraction and generalizations capabilities of the architecture. Nevertheless OBaMADE is intended to be able to solve much other kind of problems in distributed environments scenarios. It should be applied to other varieties of situations and to other knowledge fields to fully develop its potencial.[ES]Los entornos distribuidos representan un campo de conocimiento complejo en el que las soluciones a aplicar deben ser flexibles y deben contar con gran capacidad de adaptación. Este tipo de entornos está normalmente relacionado con problemas donde varios usuarios y dispositivos entran en juego. Para solucionar dichos problemas, pueden utilizarse sistemas locales que, aunque ofrezcan buenos resultados en términos de calidad de los mismos, no son tan efectivos en cuanto a la interacción y posibilidades de uso. Existen múltiples técnicas que pueden ser empleadas para resolver este tipo de problemas, desde CORBA a sistemas multiagente, pasando por servicios web y SOA, entre otros. Todas estas mitologías tienen sus ventajas e inconvenientes, que se analizan en este documento, para explicar, finalmente, la nueva arquitectura presentada como una solución para los problemas generados en entornos distribuidos. La nueva arquitectura aquí se llama OBaMADE, que es el acrónimo del inglés Organization Based Multiagent Architecture for Distributed Environments (Arquitectura Multiagente Basada en Organizaciones para Entornos Distribuidos). Se trata de una arquitectura multiagente basasa en el paradigma de las organizaciones de agente, donde los agentes que forman parte de la arquitectura se estructuran en organizaciones para mejorar sus capacidades organizativas. La capacidad de razonamiento de la arquitectura está basada en la metodología de razonamiento basado en casos, que se ha implementado en una de las organizaciones internas de la arquitectura por medio de agentes que crean servicios que responden a las solicitudes externas de los usuarios. La arquitectura OBaMADE se ha aplicado de forma exitosa a dos casos de estudio diferentes, en los que se han demostrado sus capacidades predictivas. Aplicando OBaMADE a estos casos de estudio se han obtenido resultados esperanzadores y, al ser sistemas complejos, se han demostrado las capacidades tanto de abstracción como de generalización de la arquitectura presentada. Sin embargo, esta arquitectura está diseñada para poder ser aplicada a más tipo de problemas de entornos distribuidos. Debe ser aplicada a más variadas situaciones y a otros campos de conocimiento para desarrollar completamente el potencial de esta arquitectura
    corecore