552 research outputs found

    Facial parity edge colouring

    Get PDF
    International audienceA facial parity edge colouring of a connected bridgeless plane graph is an edge colouring in which no two face-adjacent edges (consecutive edges of a facial walk of some face) receive the same colour, in addition, for each face α and each colour c, either no edge or an odd number of edges incident with α is coloured with c. From Vizing's theorem it follows that every 3-connected plane graph has a such colouring with at most Δ* + 1 colours, where Δ* is the size of the largest face. In this paper we prove that any connected bridgeless plane graph has a facial parity edge colouring with at most 92 colours

    Parity vertex colouring of plane graphs

    Get PDF
    AbstractA proper vertex colouring of a 2-connected plane graph G is a parity vertex colouring if for each face f and each colour c, either no vertex or an odd number of vertices incident with f is coloured with c. The minimum number of colours used in such a colouring of G is denoted by χp(G).In this paper, we prove that χp(G)≤118 for every 2-connected plane graph G

    On the Strong Parity Chromatic Number

    Get PDF
    International audienceA vertex colouring of a 2-connected plane graph G is a strong parity vertex colouring if for every face f and each colour c, the number of vertices incident with f coloured by c is either zero or odd. Czap et al. [Discrete Math. 311 (2011) 512-520] proved that every 2-connected plane graph has a proper strong parity vertex colouring with at most 118 colours. In this paper we improve this upper bound for some classes of plane graphs

    Strong parity vertex coloring of plane graphs

    No full text
    Graph TheoryInternational audienceA strong parity vertex coloring of a 2-connected plane graph is a coloring of the vertices such that every face is incident with zero or an odd number of vertices of each color. We prove that every 2-connected loopless plane graph has a strong parity vertex coloring with 97 colors. Moreover the coloring we construct is proper. This proves a conjecture of Czap and Jendrol' [Discuss. Math. Graph Theory 29 (2009), pp. 521-543.]. We also provide examples showing that eight colors may be necessary (ten when restricted to proper colorings)
    corecore