3,181 research outputs found

    Global and Feature Based Gender Classification of Faces: A Comparison of Human Performance and Computational Models

    Get PDF
    Original paper can be found at: http://eproceedings.worldscinet.com/9789812701886/9789812701886_0036.html Copyright World Scientific Publishing Company. http://dx.doi.org/10.1142/9789812701886_0036Most computational models for gender classification use global information (the full face image) giving equal weight to the whole face area irrespective of the importance of the internal features. Here, we use a global and feature based representation of face images that includes both global and featural information. We use dimensionality reduction techniques and a support vector machine classifier and show that this method performs better than either global or feature based representations alone.Peer reviewe

    Smile detection in the wild based on transfer learning

    Full text link
    Smile detection from unconstrained facial images is a specialized and challenging problem. As one of the most informative expressions, smiles convey basic underlying emotions, such as happiness and satisfaction, which lead to multiple applications, e.g., human behavior analysis and interactive controlling. Compared to the size of databases for face recognition, far less labeled data is available for training smile detection systems. To leverage the large amount of labeled data from face recognition datasets and to alleviate overfitting on smile detection, an efficient transfer learning-based smile detection approach is proposed in this paper. Unlike previous works which use either hand-engineered features or train deep convolutional networks from scratch, a well-trained deep face recognition model is explored and fine-tuned for smile detection in the wild. Three different models are built as a result of fine-tuning the face recognition model with different inputs, including aligned, unaligned and grayscale images generated from the GENKI-4K dataset. Experiments show that the proposed approach achieves improved state-of-the-art performance. Robustness of the model to noise and blur artifacts is also evaluated in this paper

    Biometric Backdoors: A Poisoning Attack Against Unsupervised Template Updating

    Full text link
    In this work, we investigate the concept of biometric backdoors: a template poisoning attack on biometric systems that allows adversaries to stealthily and effortlessly impersonate users in the long-term by exploiting the template update procedure. We show that such attacks can be carried out even by attackers with physical limitations (no digital access to the sensor) and zero knowledge of training data (they know neither decision boundaries nor user template). Based on the adversaries' own templates, they craft several intermediate samples that incrementally bridge the distance between their own template and the legitimate user's. As these adversarial samples are added to the template, the attacker is eventually accepted alongside the legitimate user. To avoid detection, we design the attack to minimize the number of rejected samples. We design our method to cope with the weak assumptions for the attacker and we evaluate the effectiveness of this approach on state-of-the-art face recognition pipelines based on deep neural networks. We find that in scenarios where the deep network is known, adversaries can successfully carry out the attack over 70% of cases with less than ten injection attempts. Even in black-box scenarios, we find that exploiting the transferability of adversarial samples from surrogate models can lead to successful attacks in around 15% of cases. Finally, we design a poisoning detection technique that leverages the consistent directionality of template updates in feature space to discriminate between legitimate and malicious updates. We evaluate such a countermeasure with a set of intra-user variability factors which may present the same directionality characteristics, obtaining equal error rates for the detection between 7-14% and leading to over 99% of attacks being detected after only two sample injections.Comment: 12 page
    • …
    corecore