80,276 research outputs found
Regression-based Multi-View Facial Expression Recognition
We present a regression-based scheme for multi-view facial expression recognition based on 2-D geometric features. We address the problem by mapping facial points (e.g. mouth corners) from non-frontal to frontal view where further recognition of the expressions can be performed using a state-of-the-art facial expression recognition method. To learn the mapping functions we investigate four regression models: Linear Regression (LR), Support Vector Regression (SVR), Relevance Vector Regression (RVR) and Gaussian Process Regression (GPR). Our extensive experiments on the CMU Multi-PIE facial expression database show that the proposed scheme outperforms view-specific classifiers by utilizing considerably less training data
Towards a comprehensive 3D dynamic facial expression database
Human faces play an important role in everyday life, including the expression of person identity,
emotion and intentionality, along with a range of biological functions. The human face has also become the
subject of considerable research effort, and there has been a shift towards understanding it using stimuli of
increasingly more realistic formats. In the current work, we outline progress made in the production of a
database of facial expressions in arguably the most realistic format, 3D dynamic. A suitable architecture for
capturing such 3D dynamic image sequences is described and then used to record seven expressions (fear,
disgust, anger, happiness, surprise, sadness and pain) by 10 actors at 3 levels of intensity (mild, normal and
extreme). We also present details of a psychological experiment that was used to formally evaluate the
accuracy of the expressions in a 2D dynamic format. The result is an initial, validated database for researchers
and practitioners. The goal is to scale up the work with more actors and expression types
Facial Expression Recognition Based on Local Binary Patterns and Kernel Discriminant Isomap
Facial expression recognition is an interesting and challenging subject. Considering the nonlinear manifold structure of facial images, a new kernel-based manifold learning method, called kernel discriminant isometric mapping (KDIsomap), is proposed. KDIsomap aims to nonlinearly extract the discriminant information by maximizing the interclass scatter while minimizing the intraclass scatter in a reproducing kernel Hilbert space. KDIsomap is used to perform nonlinear dimensionality reduction on the extracted local binary patterns (LBP) facial features, and produce low-dimensional discrimimant embedded data representations with striking performance improvement on facial expression recognition tasks. The nearest neighbor classifier with the Euclidean metric is used for facial expression classification. Facial expression recognition experiments are performed on two popular facial expression databases, i.e., the JAFFE database and the Cohn-Kanade database. Experimental results indicate that KDIsomap obtains the best accuracy of 81.59% on the JAFFE database, and 94.88% on the Cohn-Kanade database. KDIsomap outperforms the other used methods such as principal component analysis (PCA), linear discriminant analysis (LDA), kernel principal component analysis (KPCA), kernel linear discriminant analysis (KLDA) as well as kernel isometric mapping (KIsomap)
Framework for reliable, real-time facial expression recognition for low resolution images
International audienceAutomatic recognition of facial expressions is a challenging problem specially for low spatial resolution facial images. It has many potential applications in human-computer interactions, social robots, deceit detection, interactive video and behavior monitoring. In this study we present a novel framework that can recognize facial expressions very efficiently and with high accuracy even for very low resolution facial images. The proposed framework is memory and time efficient as it extracts texture features in a pyramidal fashion only from the perceptual salient regions of the face. We tested the framework on different databases, which includes Cohn-Kanade (CK+) posed facial expression database, spontaneous expressions of MMI facial expression database and FG-NET facial expressions and emotions database (FEED) and obtained very good results. Moreover, our proposed framework exceeds state-of-the-art methods for expression recognition on low resolution images
- …