2,098 research outputs found

    Global-Local Face Upsampling Network

    Full text link
    Face hallucination, which is the task of generating a high-resolution face image from a low-resolution input image, is a well-studied problem that is useful in widespread application areas. Face hallucination is particularly challenging when the input face resolution is very low (e.g., 10 x 12 pixels) and/or the image is captured in an uncontrolled setting with large pose and illumination variations. In this paper, we revisit the algorithm introduced in [1] and present a deep interpretation of this framework that achieves state-of-the-art under such challenging scenarios. In our deep network architecture the global and local constraints that define a face can be efficiently modeled and learned end-to-end using training data. Conceptually our network design can be partitioned into two sub-networks: the first one implements the holistic face reconstruction according to global constraints, and the second one enhances face-specific details and enforces local patch statistics. We optimize the deep network using a new loss function for super-resolution that combines reconstruction error with a learned face quality measure in adversarial setting, producing improved visual results. We conduct extensive experiments in both controlled and uncontrolled setups and show that our algorithm improves the state of the art both numerically and visually

    Towards Realistic Face Photo-Sketch Synthesis via Composition-Aided GANs

    Full text link
    Face photo-sketch synthesis aims at generating a facial sketch/photo conditioned on a given photo/sketch. It is of wide applications including digital entertainment and law enforcement. Precisely depicting face photos/sketches remains challenging due to the restrictions on structural realism and textural consistency. While existing methods achieve compelling results, they mostly yield blurred effects and great deformation over various facial components, leading to the unrealistic feeling of synthesized images. To tackle this challenge, in this work, we propose to use the facial composition information to help the synthesis of face sketch/photo. Specially, we propose a novel composition-aided generative adversarial network (CA-GAN) for face photo-sketch synthesis. In CA-GAN, we utilize paired inputs including a face photo/sketch and the corresponding pixel-wise face labels for generating a sketch/photo. In addition, to focus training on hard-generated components and delicate facial structures, we propose a compositional reconstruction loss. Finally, we use stacked CA-GANs (SCA-GAN) to further rectify defects and add compelling details. Experimental results show that our method is capable of generating both visually comfortable and identity-preserving face sketches/photos over a wide range of challenging data. Our method achieves the state-of-the-art quality, reducing best previous Frechet Inception distance (FID) by a large margin. Besides, we demonstrate that the proposed method is of considerable generalization ability. We have made our code and results publicly available: https://fei-hdu.github.io/ca-gan/.Comment: 10 pages, 8 figures, journa

    Face Video Generation from a Single Image and Landmarks

    Full text link
    In this paper we are concerned with the challenging problem of producing a full image sequence of a deformable face given only an image and generic facial motions encoded by a set of sparse landmarks. To this end we build upon recent breakthroughs in image-to-image translation such as pix2pix, CycleGAN and StarGAN which learn Deep Convolutional Neural Networks (DCNNs) that learn to map aligned pairs or images between different domains (i.e., having different labels) and propose a new architecture which is not driven any more by labels but by spatial maps, facial landmarks. In particular, we propose the MotionGAN which transforms an input face image into a new one according to a heatmap of target landmarks. We show that it is possible to create very realistic face videos using a single image and a set of target landmarks. Furthermore, our method can be used to edit a facial image with arbitrary motions according to landmarks (e.g., expression, speech, etc.). This provides much more flexibility to face editing, expression transfer, facial video creation, etc. than models based on discrete expressions, audios or action units

    Facial Aging and Rejuvenation by Conditional Multi-Adversarial Autoencoder with Ordinal Regression

    Full text link
    Facial aging and facial rejuvenation analyze a given face photograph to predict a future look or estimate a past look of the person. To achieve this, it is critical to preserve human identity and the corresponding aging progression and regression with high accuracy. However, existing methods cannot simultaneously handle these two objectives well. We propose a novel generative adversarial network based approach, named the Conditional Multi-Adversarial AutoEncoder with Ordinal Regression (CMAAE-OR). It utilizes an age estimation technique to control the aging accuracy and takes a high-level feature representation to preserve personalized identity. Specifically, the face is first mapped to a latent vector through a convolutional encoder. The latent vector is then projected onto the face manifold conditional on the age through a deconvolutional generator. The latent vector preserves personalized face features and the age controls facial aging and rejuvenation. A discriminator and an ordinal regression are imposed on the encoder and the generator in tandem, making the generated face images to be more photorealistic while simultaneously exhibiting desirable aging effects. Besides, a high-level feature representation is utilized to preserve personalized identity of the generated face. Experiments on two benchmark datasets demonstrate appealing performance of the proposed method over the state-of-the-art

    Face Identity Disentanglement via Latent Space Mapping

    Full text link
    Learning disentangled representations of data is a fundamental problem in artificial intelligence. Specifically, disentangled latent representations allow generative models to control and compose the disentangled factors in the synthesis process. Current methods, however, require extensive supervision and training, or instead, noticeably compromise quality. In this paper, we present a method that learn show to represent data in a disentangled way, with minimal supervision, manifested solely using available pre-trained networks. Our key insight is to decouple the processes of disentanglement and synthesis, by employing a leading pre-trained unconditional image generator, such as StyleGAN. By learning to map into its latent space, we leverage both its state-of-the-art quality generative power, and its rich and expressive latent space, without the burden of training it.We demonstrate our approach on the complex and high dimensional domain of human heads. We evaluate our method qualitatively and quantitatively, and exhibit its success with de-identification operations and with temporal identity coherency in image sequences. Through this extensive experimentation, we show that our method successfully disentangles identity from other facial attributes, surpassing existing methods, even though they require more training and supervision.Comment: 17 pages, 10 figure

    Longitudinal Face Aging in the Wild - Recent Deep Learning Approaches

    Full text link
    Face Aging has raised considerable attentions and interest from the computer vision community in recent years. Numerous approaches ranging from purely image processing techniques to deep learning structures have been proposed in literature. In this paper, we aim to give a review of recent developments of modern deep learning based approaches, i.e. Deep Generative Models, for Face Aging task. Their structures, formulation, learning algorithms as well as synthesized results are also provided with systematic discussions. Moreover, the aging databases used in most methods to learn the aging process are also reviewed

    PortraitGAN for Flexible Portrait Manipulation

    Full text link
    Previous methods have dealt with discrete manipulation of facial attributes such as smile, sad, angry, surprise etc, out of canonical expressions and they are not scalable, operating in single modality. In this paper, we propose a novel framework that supports continuous edits and multi-modality portrait manipulation using adversarial learning. Specifically, we adapt cycle-consistency into the conditional setting by leveraging additional facial landmarks information. This has two effects: first cycle mapping induces bidirectional manipulation and identity preserving; second pairing samples from different modalities can thus be utilized. To ensure high-quality synthesis, we adopt texture-loss that enforces texture consistency and multi-level adversarial supervision that facilitates gradient flow. Quantitative and qualitative experiments show the effectiveness of our framework in performing flexible and multi-modality portrait manipulation with photo-realistic effects

    Deep Facial Expression Recognition: A Survey

    Full text link
    With the transition of facial expression recognition (FER) from laboratory-controlled to challenging in-the-wild conditions and the recent success of deep learning techniques in various fields, deep neural networks have increasingly been leveraged to learn discriminative representations for automatic FER. Recent deep FER systems generally focus on two important issues: overfitting caused by a lack of sufficient training data and expression-unrelated variations, such as illumination, head pose and identity bias. In this paper, we provide a comprehensive survey on deep FER, including datasets and algorithms that provide insights into these intrinsic problems. First, we describe the standard pipeline of a deep FER system with the related background knowledge and suggestions of applicable implementations for each stage. We then introduce the available datasets that are widely used in the literature and provide accepted data selection and evaluation principles for these datasets. For the state of the art in deep FER, we review existing novel deep neural networks and related training strategies that are designed for FER based on both static images and dynamic image sequences, and discuss their advantages and limitations. Competitive performances on widely used benchmarks are also summarized in this section. We then extend our survey to additional related issues and application scenarios. Finally, we review the remaining challenges and corresponding opportunities in this field as well as future directions for the design of robust deep FER systems

    Anti-Makeup: Learning A Bi-Level Adversarial Network for Makeup-Invariant Face Verification

    Full text link
    Makeup is widely used to improve facial attractiveness and is well accepted by the public. However, different makeup styles will result in significant facial appearance changes. It remains a challenging problem to match makeup and non-makeup face images. This paper proposes a learning from generation approach for makeup-invariant face verification by introducing a bi-level adversarial network (BLAN). To alleviate the negative effects from makeup, we first generate non-makeup images from makeup ones, and then use the synthesized non-makeup images for further verification. Two adversarial networks in BLAN are integrated in an end-to-end deep network, with the one on pixel level for reconstructing appealing facial images and the other on feature level for preserving identity information. These two networks jointly reduce the sensing gap between makeup and non-makeup images. Moreover, we make the generator well constrained by incorporating multiple perceptual losses. Experimental results on three benchmark makeup face datasets demonstrate that our method achieves state-of-the-art verification accuracy across makeup status and can produce photo-realistic non-makeup face images.Comment: The paper is accepted by AAAI-1

    UVA: A Universal Variational Framework for Continuous Age Analysis

    Full text link
    Conventional methods for facial age analysis tend to utilize accurate age labels in a supervised way. However, existing age datasets lies in a limited range of ages, leading to a long-tailed distribution. To alleviate the problem, this paper proposes a Universal Variational Aging (UVA) framework to formulate facial age priors in a disentangling manner. Benefiting from the variational evidence lower bound, the facial images are encoded and disentangled into an age-irrelevant distribution and an age-related distribution in the latent space. A conditional introspective adversarial learning mechanism is introduced to boost the image quality. In this way, when manipulating the age-related distribution, UVA can achieve age translation with arbitrary ages. Further, by sampling noise from the age-irrelevant distribution, we can generate photorealistic facial images with a specific age. Moreover, given an input face image, the mean value of age-related distribution can be treated as an age estimator. These indicate that UVA can efficiently and accurately estimate the age-related distribution by a disentangling manner, even if the training dataset performs a long-tailed age distribution. UVA is the first attempt to achieve facial age analysis tasks, including age translation, age generation and age estimation, in a universal framework. The qualitative and quantitative experiments demonstrate the superiority of UVA on five popular datasets, including CACD2000, Morph, UTKFace, MegaAge-Asian and FG-NET
    • …
    corecore