20,140 research outputs found

    Robust Face Recognition with Structural Binary Gradient Patterns

    Full text link
    This paper presents a computationally efficient yet powerful binary framework for robust facial representation based on image gradients. It is termed as structural binary gradient patterns (SBGP). To discover underlying local structures in the gradient domain, we compute image gradients from multiple directions and simplify them into a set of binary strings. The SBGP is derived from certain types of these binary strings that have meaningful local structures and are capable of resembling fundamental textural information. They detect micro orientational edges and possess strong orientation and locality capabilities, thus enabling great discrimination. The SBGP also benefits from the advantages of the gradient domain and exhibits profound robustness against illumination variations. The binary strategy realized by pixel correlations in a small neighborhood substantially simplifies the computational complexity and achieves extremely efficient processing with only 0.0032s in Matlab for a typical face image. Furthermore, the discrimination power of the SBGP can be enhanced on a set of defined orientational image gradient magnitudes, further enforcing locality and orientation. Results of extensive experiments on various benchmark databases illustrate significant improvements of the SBGP based representations over the existing state-of-the-art local descriptors in the terms of discrimination, robustness and complexity. Codes for the SBGP methods will be available at http://www.eee.manchester.ac.uk/research/groups/sisp/software/

    Automatic Facial Expression Recognition Using Features of Salient Facial Patches

    Full text link
    Extraction of discriminative features from salient facial patches plays a vital role in effective facial expression recognition. The accurate detection of facial landmarks improves the localization of the salient patches on face images. This paper proposes a novel framework for expression recognition by using appearance features of selected facial patches. A few prominent facial patches, depending on the position of facial landmarks, are extracted which are active during emotion elicitation. These active patches are further processed to obtain the salient patches which contain discriminative features for classification of each pair of expressions, thereby selecting different facial patches as salient for different pair of expression classes. One-against-one classification method is adopted using these features. In addition, an automated learning-free facial landmark detection technique has been proposed, which achieves similar performances as that of other state-of-art landmark detection methods, yet requires significantly less execution time. The proposed method is found to perform well consistently in different resolutions, hence, providing a solution for expression recognition in low resolution images. Experiments on CK+ and JAFFE facial expression databases show the effectiveness of the proposed system

    LDOP: Local Directional Order Pattern for Robust Face Retrieval

    Full text link
    The local descriptors have gained wide range of attention due to their enhanced discriminative abilities. It has been proved that the consideration of multi-scale local neighborhood improves the performance of the descriptor, though at the cost of increased dimension. This paper proposes a novel method to construct a local descriptor using multi-scale neighborhood by finding the local directional order among the intensity values at different scales in a particular direction. Local directional order is the multi-radius relationship factor in a particular direction. The proposed local directional order pattern (LDOP) for a particular pixel is computed by finding the relationship between the center pixel and local directional order indexes. It is required to transform the center value into the range of neighboring orders. Finally, the histogram of LDOP is computed over whole image to construct the descriptor. In contrast to the state-of-the-art descriptors, the dimension of the proposed descriptor does not depend upon the number of neighbors involved to compute the order; it only depends upon the number of directions. The introduced descriptor is evaluated over the image retrieval framework and compared with the state-of-the-art descriptors over challenging face databases such as PaSC, LFW, PubFig, FERET, AR, AT&T, and ExtendedYale. The experimental results confirm the superiority and robustness of the LDOP descriptor.Comment: Published in Multimedia Tools and Applications, Springe

    A Sparse Representation of Complete Local Binary Pattern Histogram for Human Face Recognition

    Full text link
    Human face recognition has been a long standing problem in computer vision and pattern recognition. Facial analysis can be viewed as a two-fold problem, namely (i) facial representation, and (ii) classification. So far, many face representations have been proposed, a well-known method is the Local Binary Pattern (LBP), which has witnessed a growing interest. In this respect, we treat in this paper the issues of face representation as well as classification in a novel manner. On the one hand, we use a variant to LBP, so-called Complete Local Binary Pattern (CLBP), which differs from the basic LBP by coding a given local region using a given central pixel and Sing_ Magnitude difference. Subsequently, most of LBPbased descriptors use a fixed grid to code a given facial image, which technique is, in most cases, not robust to pose variation and misalignment. To cope with such issue, a representative Multi-Resolution Histogram (MH) decomposition is adopted in our work. On the other hand, having the histograms of the considered images extracted, we exploit their sparsity to construct a so-called Sparse Representation Classifier (SRC) for further face classification. Experimental results have been conducted on ORL face database, and pointed out the superiority of our scheme over other popular state-of-the-art techniques.Comment: Accepted (but unattended) in IEEE-EMBS International Conferences on Biomedical and Health Informatics (BHI

    Facial Expression Detection using Patch-based Eigen-face Isomap Networks

    Full text link
    Automated facial expression detection problem pose two primary challenges that include variations in expression and facial occlusions (glasses, beard, mustache or face covers). In this paper we introduce a novel automated patch creation technique that masks a particular region of interest in the face, followed by Eigen-value decomposition of the patched faces and generation of Isomaps to detect underlying clustering patterns among faces. The proposed masked Eigen-face based Isomap clustering technique achieves 75% sensitivity and 66-73% accuracy in classification of faces with occlusions and smiling faces in around 1 second per image. Also, betweenness centrality, Eigen centrality and maximum information flow can be used as network-based measures to identify the most significant training faces for expression classification tasks. The proposed method can be used in combination with feature-based expression classification methods in large data sets for improving expression classification accuracies.Comment: 6 pages,7 figures, IJCAI-HINA 201

    Robust Facial Landmark Localization Based on Texture and Pose Correlated Initialization

    Full text link
    Robust facial landmark localization remains a challenging task when faces are partially occluded. Recently, the cascaded pose regression has attracted increasing attentions, due to it's superior performance in facial landmark localization and occlusion detection. However, such an approach is sensitive to initialization, where an improper initialization can severly degrade the performance. In this paper, we propose a Robust Initialization for Cascaded Pose Regression (RICPR) by providing texture and pose correlated initial shapes for the testing face. By examining the correlation of local binary patterns histograms between the testing face and the training faces, the shapes of the training faces that are most correlated with the testing face are selected as the texture correlated initialization. To make the initialization more robust to various poses, we estimate the rough pose of the testing face according to five fiducial landmarks located by multitask cascaded convolutional networks. Then the pose correlated initial shapes are constructed by the mean face's shape and the rough testing face pose. Finally, the texture correlated and the pose correlated initial shapes are joined together as the robust initialization. We evaluate RICPR on the challenging dataset of COFW. The experimental results demonstrate that the proposed scheme achieves better performances than the state-of-the-art methods in facial landmark localization and occlusion detection

    Local Neighborhood Intensity Pattern: A new texture feature descriptor for image retrieval

    Full text link
    In this paper, a new texture descriptor based on the local neighborhood intensity difference is proposed for content based image retrieval (CBIR). For computation of texture features like Local Binary Pattern (LBP), the center pixel in a 3*3 window of an image is compared with all the remaining neighbors, one pixel at a time to generate a binary bit pattern. It ignores the effect of the adjacent neighbors of a particular pixel for its binary encoding and also for texture description. The proposed method is based on the concept that neighbors of a particular pixel hold a significant amount of texture information that can be considered for efficient texture representation for CBIR. Taking this into account, we develop a new texture descriptor, named as Local Neighborhood Intensity Pattern (LNIP) which considers the relative intensity difference between a particular pixel and the center pixel by considering its adjacent neighbors and generate a sign and a magnitude pattern. Since sign and magnitude patterns hold complementary information to each other, these two patterns are concatenated into a single feature descriptor to generate a more concrete and useful feature descriptor. The proposed descriptor has been tested for image retrieval on four databases, including three texture image databases - Brodatz texture image database, MIT VisTex database and Salzburg texture database and one face database AT&T face database. The precision and recall values observed on these databases are compared with some state-of-art local patterns. The proposed method showed a significant improvement over many other existing methods.Comment: Expert Systems with Applications(Elsevier

    Face Retrieval using Frequency Decoded Local Descriptor

    Full text link
    The local descriptors have been the backbone of most of the computer vision problems. Most of the existing local descriptors are generated over the raw input images. In order to increase the discriminative power of the local descriptors, some researchers converted the raw image into multiple images with the help of some high and low pass frequency filters, then the local descriptors are computed over each filtered image and finally concatenated into a single descriptor. By doing so, these approaches do not utilize the inter frequency relationship which causes the less improvement in the discriminative power of the descriptor that could be achieved. In this paper, this problem is solved by utilizing the decoder concept of multi-channel decoded local binary pattern over the multi-frequency patterns. A frequency decoded local binary pattern (FDLBP) is proposed with two decoders. Each decoder works with one low frequency pattern and two high frequency patterns. Finally, the descriptors from both decoders are concatenated to form the single descriptor. The face retrieval experiments are conducted over four benchmarks and challenging databases such as PaSC, LFW, PubFig, and ESSEX. The experimental results confirm the superiority of the FDLBP descriptor as compared to the state-of-the-art descriptors such as LBP, SOBEL_LBP, BoF_LBP, SVD_S_LBP, mdLBP, etc.Comment: Accepted in Multimedia Tools and Applications, Springe

    Gender Classification Using Gradient Direction Pattern

    Full text link
    A novel methodology for gender classification is presented in this paper. It extracts feature from local region of a face using gray color intensity difference. The facial area is divided into sub-regions and GDP histogram extracted from those regions are concatenated into a single vector to represent the face. The classification accuracy obtained by using support vector machine has outperformed all traditional feature descriptors for gender classification. It is evaluated on the images collected from FERET database and obtained very high accuracy.Comment: 3 pages, 5 figures, 3 tables, SCI journa

    Survey on RGB, 3D, Thermal, and Multimodal Approaches for Facial Expression Recognition: History, Trends, and Affect-related Applications

    Full text link
    Facial expressions are an important way through which humans interact socially. Building a system capable of automatically recognizing facial expressions from images and video has been an intense field of study in recent years. Interpreting such expressions remains challenging and much research is needed about the way they relate to human affect. This paper presents a general overview of automatic RGB, 3D, thermal and multimodal facial expression analysis. We define a new taxonomy for the field, encompassing all steps from face detection to facial expression recognition, and describe and classify the state of the art methods accordingly. We also present the important datasets and the bench-marking of most influential methods. We conclude with a general discussion about trends, important questions and future lines of research
    • …
    corecore