749 research outputs found

    Fractional Perfect b-Matching Polytopes. I: General Theory

    Get PDF
    The fractional perfect b-matching polytope of an undirected graph G is the polytope of all assignments of nonnegative real numbers to the edges of G such that the sum of the numbers over all edges incident to any vertex v is a prescribed nonnegative number b_v. General theorems which provide conditions for nonemptiness, give a formula for the dimension, and characterize the vertices, edges and face lattices of such polytopes are obtained. Many of these results are expressed in terms of certain spanning subgraphs of G which are associated with subsets or elements of the polytope. For example, it is shown that an element u of the fractional perfect b-matching polytope of G is a vertex of the polytope if and only if each component of the graph of u either is acyclic or else contains exactly one cycle with that cycle having odd length, where the graph of u is defined to be the spanning subgraph of G whose edges are those at which u is positive.Comment: 37 page

    The weighted stable matching problem

    Get PDF
    We study the stable matching problem in non-bipartite graphs with incomplete but strict preference lists, where the edges have weights and the goal is to compute a stable matching of minimum or maximum weight. This problem is known to be NP-hard in general. Our contribution is two fold: a polyhedral characterization and an approximation algorithm. Previously Chen et al. have shown that the stable matching polytope is integral if and only if the subgraph obtained after running phase one of Irving's algorithm is bipartite. We improve upon this result by showing that there are instances where this subgraph might not be bipartite but one can further eliminate some edges and arrive at a bipartite subgraph. Our elimination procedure ensures that the set of stable matchings remains the same, and thus the stable matching polytope of the final subgraph contains the incidence vectors of all stable matchings of our original graph. This allows us to characterize a larger class of instances for which the weighted stable matching problem is polynomial-time solvable. We also show that our edge elimination procedure is best possible, meaning that if the subgraph we arrive at is not bipartite, then there is no bipartite subgraph that has the same set of stable matchings as the original graph. We complement these results with a 22-approximation algorithm for the minimum weight stable matching problem for instances where each agent has at most two possible partners in any stable matching. This is the first approximation result for any class of instances with general weights.Comment: This is an extended version of a paper to appear at the The Fourth International Workshop on Matching Under Preferences (MATCH-UP 2017

    Faces of Birkhoff Polytopes

    Full text link
    The Birkhoff polytope B(n) is the convex hull of all (n x n) permutation matrices, i.e., matrices where precisely one entry in each row and column is one, and zeros at all other places. This is a widely studied polytope with various applications throughout mathematics. In this paper we study combinatorial types L of faces of a Birkhoff polytope. The Birkhoff dimension bd(L) of L is the smallest n such that B(n) has a face with combinatorial type L. By a result of Billera and Sarangarajan, a combinatorial type L of a d-dimensional face appears in some B(k) for k less or equal to 2d, so bd(L) is at most d. We will characterize those types whose Birkhoff dimension is at least 2d-3, and we prove that any type whose Birkhoff dimension is at least d is either a product or a wedge over some lower dimensional face. Further, we computationally classify all d-dimensional combinatorial types for d between 2 and 8.Comment: 29 page
    • …
    corecore