77 research outputs found

    Facet-Based Regularization for Scalable Radio-Interferometric Imaging

    Get PDF

    Imaging and uncertainty quantification in radio astronomy via convex optimization : when precision meets scalability

    Get PDF
    Upcoming radio telescopes such as the Square Kilometre Array (SKA) will provide sheer amounts of data, allowing large images of the sky to be reconstructed at an unprecedented resolution and sensitivity over thousands of frequency channels. In this regard, wideband radio-interferometric imaging consists in recovering a 3D image of the sky from incomplete and noisy Fourier data, that is a highly ill-posed inverse problem. To regularize the inverse problem, advanced prior image models need to be tailored. Moreover, the underlying algorithms should be highly parallelized to scale with the vast data volumes provided and the Petabyte image cubes to be reconstructed for SKA. The research developed in this thesis leverages convex optimization techniques to achieve precise and scalable imaging for wideband radio interferometry and further assess the degree of confidence in particular 3D structures present in the reconstructed cube. In the context of image reconstruction, we propose a new approach that decomposes the image cube into regular spatio-spectral facets, each is associated with a sophisticated hybrid prior image model. The approach is formulated as an optimization problem with a multitude of facet-based regularization terms and block-specific data-fidelity terms. The underpinning algorithmic structure benefits from well-established convergence guarantees and exhibits interesting functionalities such as preconditioning to accelerate the convergence speed. Furthermore, it allows for parallel processing of all data blocks and image facets over a multiplicity of CPU cores, allowing the bottleneck induced by the size of the image and data cubes to be efficiently addressed via parallelization. The precision and scalability potential of the proposed approach are confirmed through the reconstruction of a 15 GB image cube of the Cyg A radio galaxy. In addition, we propose a new method that enables analyzing the degree of confidence in particular 3D structures appearing in the reconstructed cube. This analysis is crucial due to the high ill-posedness of the inverse problem. Besides, it can help in making scientific decisions on the structures under scrutiny (e.g., confirming the existence of a second black hole in the Cyg A galaxy). The proposed method is posed as an optimization problem and solved efficiently with a modern convex optimization algorithm with preconditioning and splitting functionalities. The simulation results showcase the potential of the proposed method to scale to big data regimes

    Advanced sparse optimization algorithms for interferometric imaging inverse problems in astronomy

    Get PDF
    In the quest to produce images of the sky at unprecedented resolution with high sensitivity, new generation of astronomical interferometers have been designed. To meet the sensing capabilities of these instruments, techniques aiming to recover the sought images from the incompletely sampled Fourier domain measurements need to be reinvented. This goes hand-in-hand with the necessity to calibrate the measurement modulating unknown effects, which adversely affect the image quality, limiting its dynamic range. The contribution of this thesis consists in the development of advanced optimization techniques tailored to address these issues, ranging from radio interferometry (RI) to optical interferometry (OI). In the context of RI, we propose a novel convex optimization approach for full polarization imaging relying on sparsity-promoting regularizations. Unlike standard RI imaging algorithms, our method jointly solves for the Stokes images by enforcing the polarization constraint, which imposes a physical dependency between the images. These priors are shown to enhance the imaging quality via various performed numerical studies. The proposed imaging approach also benefits from its scalability to handle the huge amounts of data expected from the new instruments. When it comes to deal with the critical and challenging issues of the direction-dependent effects calibration, we further propose a non-convex optimization technique that unifies calibration and imaging steps in a global framework, in which we adapt the earlier developed imaging method for the imaging step. In contrast to existing RI calibration modalities, our method benefits from well-established convergence guarantees even in the non-convex setting considered in this work and its efficiency is demonstrated through several numerical experiments. Last but not least, inspired by the performance of these methodologies and drawing ideas from them, we aim to solve image recovery problem in OI that poses its own set of challenges primarily due to the partial loss of phase information. To this end, we propose a sparsity regularized non-convex optimization algorithm that is equipped with convergence guarantees and is adaptable to both monochromatic and hyperspectral OI imaging. We validate it by presenting the simulation results

    Parallel faceted imaging in radio interferometry via proximal splitting (Faceted HyperSARA): when precision meets scalability

    Full text link
    Upcoming radio interferometers are aiming to image the sky at new levels of resolution and sensitivity, with wide-band image cubes reaching close to the Petabyte scale for SKA. Modern proximal optimization algorithms have shown a potential to significantly outperform CLEAN thanks to their ability to inject complex image models to regularize the inverse problem for image formation from visibility data. They were also shown to be scalable to large data volumes thanks to a splitting functionality enabling the decomposition of data into blocks, for parallel processing of block-specific data-fidelity terms of the objective function. In this work, the splitting functionality is further exploited to decompose the image cube into spatio-spectral facets, and enable parallel processing of facet-specific regularization terms in the objective. The resulting Faceted HyperSARA algorithm is implemented in MATLAB (code available on GitHub). Simulation results on synthetic image cubes confirm that faceting can provide a major increase in scalability at no cost in imaging quality. A proof-of-concept reconstruction of a 15 GB image of Cyg A from 7.4 GB of VLA data, utilizing 496 CPU cores on a HPC system for 68 hours, confirms both scalability and a quantum jump in imaging quality from CLEAN. Assuming slow spectral slope of Cyg A, we also demonstrate that Faceted HyperSARA can be combined with a dimensionality reduction technique, enabling utilizing only 31 CPU cores for 142 hours to form the Cyg A image from the same data, while preserving reconstruction quality. Cyg A reconstructed cubes are available online

    Scalable precision wide-field imaging in radio interferometry: I. uSARA validated on ASKAP data

    Full text link
    As Part I of a paper series showcasing a new imaging framework, we consider the recently proposed unconstrained Sparsity Averaging Reweighted Analysis (uSARA) optimisation algorithm for wide-field, high-resolution, high-dynamic range, monochromatic intensity imaging. We reconstruct images from real radio-interferometric observations obtained with the Australian Square Kilometre Array Pathfinder (ASKAP) and present these results in comparison to the widely-used, state-of-the-art imager WSClean. Selected fields come from the ASKAP Early Science and Evolutionary Map of the Universe (EMU) Pilot surveys and contain several complex radio sources: the merging cluster system Abell 3391-95, the merging cluster SPT-CL 2023-5535, and many extended, or bent-tail, radio galaxies, including the X-shaped radio galaxy PKS 2014-558 and the ``dancing ghosts'', known collectively as PKS 2130-538. The modern framework behind uSARA utilises parallelisation and automation to solve for the w-effect and efficiently compute the measurement operator, allowing for wide-field reconstruction over the full field-of-view of individual ASKAP beams (up to 3.3 deg each). The precision capability of uSARA produces images with both super-resolution and enhanced sensitivity to diffuse components, surpassing traditional CLEAN algorithms which typically require a compromise between such yields. Our resulting monochromatic uSARA-ASKAP images of the selected data highlight both extended, diffuse emission and compact, filamentary emission at very high resolution (up to 2.2 arcsec), revealing never-before-seen structure. Here we present a validation of our uSARA-ASKAP images by comparing the morphology of reconstructed sources, measurements of diffuse flux, and spectral index maps with those obtained from images made with WSClean.Comment: Accepted for publication in MNRA
    • …
    corecore