19,835 research outputs found

    Active Authentication using an Autoencoder regularized CNN-based One-Class Classifier

    Full text link
    Active authentication refers to the process in which users are unobtrusively monitored and authenticated continuously throughout their interactions with mobile devices. Generally, an active authentication problem is modelled as a one class classification problem due to the unavailability of data from the impostor users. Normally, the enrolled user is considered as the target class (genuine) and the unauthorized users are considered as unknown classes (impostor). We propose a convolutional neural network (CNN) based approach for one class classification in which a zero centered Gaussian noise and an autoencoder are used to model the pseudo-negative class and to regularize the network to learn meaningful feature representations for one class data, respectively. The overall network is trained using a combination of the cross-entropy and the reconstruction error losses. A key feature of the proposed approach is that any pre-trained CNN can be used as the base network for one class classification. Effectiveness of the proposed framework is demonstrated using three publically available face-based active authentication datasets and it is shown that the proposed method achieves superior performance compared to the traditional one class classification methods. The source code is available at: github.com/otkupjnoz/oc-acnn.Comment: Accepted and to appear at AFGR 201

    Active User Authentication for Smartphones: A Challenge Data Set and Benchmark Results

    Full text link
    In this paper, automated user verification techniques for smartphones are investigated. A unique non-commercial dataset, the University of Maryland Active Authentication Dataset 02 (UMDAA-02) for multi-modal user authentication research is introduced. This paper focuses on three sensors - front camera, touch sensor and location service while providing a general description for other modalities. Benchmark results for face detection, face verification, touch-based user identification and location-based next-place prediction are presented, which indicate that more robust methods fine-tuned to the mobile platform are needed to achieve satisfactory verification accuracy. The dataset will be made available to the research community for promoting additional research.Comment: 8 pages, 12 figures, 6 tables. Best poster award at BTAS 201

    Deep Feature-based Face Detection on Mobile Devices

    Full text link
    We propose a deep feature-based face detector for mobile devices to detect user's face acquired by the front facing camera. The proposed method is able to detect faces in images containing extreme pose and illumination variations as well as partial faces. The main challenge in developing deep feature-based algorithms for mobile devices is the constrained nature of the mobile platform and the non-availability of CUDA enabled GPUs on such devices. Our implementation takes into account the special nature of the images captured by the front-facing camera of mobile devices and exploits the GPUs present in mobile devices without CUDA-based frameorks, to meet these challenges.Comment: ISBA 201

    Biometric Authentication System on Mobile Personal Devices

    Get PDF
    We propose a secure, robust, and low-cost biometric authentication system on the mobile personal device for the personal network. The system consists of the following five key modules: 1) face detection; 2) face registration; 3) illumination normalization; 4) face verification; and 5) information fusion. For the complicated face authentication task on the devices with limited resources, the emphasis is largely on the reliability and applicability of the system. Both theoretical and practical considerations are taken. The final system is able to achieve an equal error rate of 2% under challenging testing protocols. The low hardware and software cost makes the system well adaptable to a large range of security applications

    Multimodal Learning and Its Application to Mobile Active Authentication

    Get PDF
    Mobile devices are becoming increasingly popular due to their flexibility and convenience in managing personal information such as bank accounts, profiles and passwords. With the increasing use of mobile devices comes the issue of security as the loss of a smartphone would compromise the personal information of the user. Traditional methods for authenticating users on mobile devices are based on passwords or fingerprints. As long as mobile devices remain active, they do not incorporate any mechanisms for verifying if the user originally authenticated is still the user in control of the mobile device. Thus, unauthorized individuals may improperly obtain access to personal information of the user if a password is compromised or if a user does not exercise adequate vigilance after initial authentication on a device. To deal with this problem, active authentication systems have been proposed in which users are continuously monitored after the initial access to the mobile device. Active authentication systems can capture users' data (facial image data, screen touch data, motion data, etc) through sensors (camera, touch screen, accelerometer, etc), extract features from different sensors' data, build classification models and authenticate users via comparing additional sensor data against the models. Mobile active authentication can be viewed as one application of the more general problem, namely, multimodal classification. The idea of multimodal classification is to utilize multiple sources (modalities) measuring the same instance to improve the overall performance compared to using a single source (modality). Multimodal classification also arises in many computer vision tasks such as image classification, RGBD object classification and scene recognition. In this dissertation, we not only present methods and algorithms related to active authentication problems, but also propose multimodal recognition algorithms based on low-rank and joint sparse representations as well as multimodal metric learning algorithm to improve multimodal classification performance. The multimodal learning algorithms proposed in this dissertation make no assumption about the feature type or applications, thus they can be applied to various recognition tasks such as mobile active authentication, image classification and RGBD recognition. First, we study the mobile active authentication problem by exploiting a dataset consisting of 50 users' face captured by the phone's frontal camera and screen touch data sensed by the screen for evaluating active authentication algorithms developed under this research. The dataset is named as UMD Active Authentication (UMDAA) dataset. Details on data preprocessing and feature extraction for touch data and face data are described respectively. Second, we present an approach for active user authentication using screen touch gestures by building linear and kernelized dictionaries based on sparse representations and associated classifiers. Experiments using the screen touch data components of UMDAA dataset as well as two other publicly available screen touch datasets show that the dictionary-based classification method compares favorably to those discussed in the literature. Experiments done using screen touch data collected in three different sessions show a drop in performance when the training and test data come from different sessions. This suggests a need for applying domain adaptation methods to further improve the performance of the classifiers. Third, we propose a domain adaptive sparse representation-based classification method that learns projections of data in a space where the sparsity of data is maintained. We provide an efficient iterative procedure for solving the proposed optimization problem. One of the key features of the proposed method is that it is computationally efficient as learning is done in the lower-dimensional space. Various experiments on UMDAA dataset show that our method is able to capture the meaningful structure of data and can perform significantly better than many competitive domain adaptation algorithms. Fourth, we propose low-rank and joint sparse representations-based multimodal recognition. Our formulations can be viewed as generalized versions of multivariate low-rank and sparse regression, where sparse and low-rank representations across all the modalities are imposed. One of our methods takes into account coupling information within different modalities simultaneously by enforcing the common low-rank and joint sparse representation among each modality's observations. We also modify our formulations by including an occlusion term that is assumed to be sparse. The alternating direction method of multipliers is proposed to efficiently solve the proposed optimization problems. Extensive experiments on UMDAA dataset, WVU multimodal biometrics dataset and Pascal-Sentence image classification dataset show that that our methods provide better recognition performance than other feature-level fusion methods. Finally, we propose a hierarchical multimodal metric learning algorithm for multimodal data in order to improve multimodal classification performance. We design metric for each modality as a product of two matrices: one matrix is modality specific, the other is enforced to be shared by all the modalities. The modality specific projection matrices capture the varying characteristics exhibited by multiple modalities and the common projection matrix establishes the relationship of the distance metrics corresponding to multiple modalities. The learned metrics significantly improves classification accuracy and experimental results of tagged image classification problem as well as various RGBD recognition problems show that the proposed algorithm outperforms existing learning algorithms based on multiple metrics as well as other state-of-the-art approaches tested on these datasets. Furthermore, we make the proposed multimodal metric learning algorithm non-linear by using kernel methods
    corecore